
Boosting-based Learning Agents for Experience Classification

Po-Chun Chen, Xiaocong Fan, Shizhuo Zhu, and John Yen
Laboratory for Intelligent Agents, College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802, USA
{pchen, zfan, szhu, jyen}@ist.psu.edu

Abstract

The capability of learning from experience is of criti-
cal importance in developing multi-agent systems support-
ing dynamic group decision making. In this paper, we in-
troduce a hierarchical learning approach, aiming to sup-
port hierarchical group decision making where the decision
makers at lower levels only have partial view of the whole
picture. To further understand such a hierarchical learn-
ing concept, we implemented a learning component within
the R-CAST agent architecture, with lower-level learners
using the LogitBoost algorithm with decision stumps. The
boosting-based learning agents were then used in our ex-
periments to classify experience instances. The results indi-
cate that hierarchical learning can largely improve decision
accuracy when lower-level decision makers only have lim-
ited information accessibility.

1 Introduction

Experience acquisition and adaptation is tightly con-
nected to learning. For example, instance-based learning
[8] is particularly relevant to experience accumulation; the
Recognition-Primed Decision (RPD) model [9] highly re-
lies on the availability and correct recognition of past expe-
riences. It is thus critical for agent architectures running in a
dynamic environment to incorporate a learning framework
and a flavor of “case-based reasoning.”

The R-CAST agent architecture (RPD-enabled Collab-
orative Agents for Simulating Teamwork) [3] is built on
top of the concept of shared mental models [1], the the-
ory of proactive information delivery [4], and Klein’s
Recognition-Primed Decision (RPD) model [9]. The R-
CAST agent architecture has implemented a “collaborative-
RPD” decision process, which supports close human-agent
collaborations in relevant information sharing, decision
progress monitoring, and expectancy-based decision adap-
tation. R-CAST has been used in conducting experiments
in simulated Command & Control domain and in studying

research-related issues (e.g., [2]). However, R-CAST still
lacks a built-in learning mechanism, assuming experiences
are collected off-line from domain experts. This can limit
the use of R-CAST when the collected experience is defi-
cient or not directly applicable.

Since R-CAST is a team-based agent architecture, it is
natural to develop learning approaches that can leverage
team structures and teamwork knowledge associated with
the R-CAST run-time environment. In this paper, we pro-
pose a learning approach that takes advantage of the hier-
archical organization of agent teams for agent collaboration
in decision making. Taking a group of distributed decision
makers as an example, as a team, all the decision makers
share the same goal and decision making context; however,
they can propose different decisions due to their diversity
in experience, knowledge, beliefs, perspectives, evaluation
criteria, and other aspects. The idea of hierarchical learn-
ing is to organize an agent group such that a final decision
maker can take advantage of the strength of diversity by
combining decisions from lower-level agents with different
criteria. Complementary to the shared mental model ap-
proach [12, 4], which states that proactive teammates can
share information to establish global situation awareness,
we focus on the fact that agents may unavoidably have to
make decisions only based on partial information.

To realize the hierarchical learning concept, we extended
the R-CAST agent with a learning component. By specif-
ically focusing on classification problems, we chose boost-
ing [10, 5, 6] as its core algorithm. Boosting has a number
of variations, among which we chose LogitBoost [7] since
it has been shown to be well-performed in multi-class clas-
sification problems. In addition, for flexibility and appli-
cability, decision stumps (simple decision trees with only
two leaves) was chosen as the base learners for the boosting
algorithm since it has the least assumptions on underlying
data models.

In the rest of the paper, section 2 presents the idea of
hierarchical learning and the R-CAST learning component;
section 3 describes three experiments; and section 4 con-
cludes the paper.



2 The Learning Framework

In this section, we first introduce the concept of hierar-
chical learning, and then we briefly describe the learning
component developed under the R-CAST architecture.

2.1 The Hierarchical Learning

The hierarchical learning is a variation of the original
boosting. The idea is to build a multi-agent system to im-
plement a committee of learners forming a multi-layered
learning structure such as the example shown in Figure
1. An upper-level learning agent makes classification de-
cisions based on the recommendations from its immediate
lower-level agents. Learning agents at the same level can
share the same goal and tasking context, but they typically
have different perspectives and evaluation criteria. Conse-
quently, they can generate different classification decisions
regarding a same situation. Our assumption is that, by com-
bining the diversity and learnabilities [10] of its lower-level
agents, an upper-level agent could perform better than each
individual of the lower-level agents.

Agent


Agent
 Agent


Result
 Result


Agent
 Agent


Res
ult


 Result


Agent
 Agent


Result


Result
Res
ult




Result


Figure 1. The hierarchical learning

This learning approach relies on the following layered
training protocol:

(a) Each of the bottom-level agents is individually trained
(can use independent training set) to obtain a classifier
reflecting its decision-making criteria (perspective) re-
garding the domain problem.

(b) To train an upper-level agent, select a distinct set A of
training instances, and request each of the immediate
lower-level agents (already trained) to classify this set
of instances. The classification results as well as the
correct class labels are collected to form a set B of
training instances for the upper-level agent. It is worth
noting that training set B differs from set A. The in-
stances in B take the lower-level agents’ classification
results as its attribute values. For example, if we have
three agents named A1, A2, and A3, the composed
training instances will be of the form (result of A1,
result of A2, result of A3, correct class). The upper-
level agent is then trained using set B, resulted with a
classifier based on its children’s results.

(c) Repeat the same procedure to train all agents level by
level toward the topmost one. As a consequence, all
the agents each will have a well-trained classifier that
combines the perspectives of all its subordinates.

Obviously, the topmost agent can generate the final de-
cisions considering all the contribution of the committee
members. The performance can be sensitive to what strate-
gies are used to balance the effects of each lower-level
agent’s contribution in producing the final decisions. For
now, we adopt majority vote; in the future, we will explore
other approaches such as weighted-sum and decision trees.

In general, this hierarchical learning approach provides a
systematic and flexible way for organizing learning-enabled
agents. Better performance can be gained by comprehen-
sively considering the recommendations from a group of
“weak learners.”

This hierarchical learning is motivated by the original
idea of boosting. Boosting [10] is a kind of ensemble learn-
ing which combines a number of weak learners to form a
committee, and the committee integrates the decision by
strategies such as majority vote [5] or weighted-sum com-
putation. Although each of the weak learner can just be cor-
rect on certain fraction of the whole instance set, by boost-
ing they can be coherently organized to provide quite desir-
able results.

However, the hierarchical learning differs from boost-
ing algorithms (e.g., AdaBoost [6] and LogitBoost [7]) in
the way how base learners are trained. Boosting builds
the base learners by iteratively training a decision model,
where each of the iteration creates a new learner of the
same model, and the final decision is made by integrating
these learners. Whereas in our approach, the base learners
are individually trained agent entities; and the upper-level
agents are trained level-by-level, exploiting the well-trained
lower-level agents. In summary, this learning approach can
be viewed as an agent-level boosting, where each learning
agent may have its own distinctive knowledge, experiences,
and evaluation criteria.

2.2 The Learning Component

In order to realize the hierarchical learning, we extended
the R-CAST agent with a learning component. A knowl-
edge base-centric framework was designed as shown in Fig-
ure 2, including five main functions working as follows.
First, the preprocessing function prepares training instances
by composing relevant pieces of facts of the type “Trainin-
gInstance” to produce complete training instances. Second,
the training function will build a classifier using the latest
set of training instances. Third, whenever the agent rec-
ognizes a current situation, the classifying function will be
invoked to perform classification and propose a recommen-
dation with the latest trained classifier. Fourth, a scenario-



dependent verifier will be invoked to check the correct class
label for the given situation. Last, the performance evalua-
tor will determine the performance in terms of error rates.

(ObservedInstance (?id ?x ?y ?z))


(TrainingInstance (?id ?x ?y ?z ?decision))


(RecommendedDecision

(?id ?decision))
(CorrectDecision


(?id ?decision))


(CorrectDecision

(?id ?decision))


Preprocessing


Training


Classifying
Verifier


Performance

Evaluator


Stack of

Training


Instances


Stack of

Classifiers


Assert


Generate

a Training

Instance


Assert


Knowledge

Base


Figure 2. KB-centric learning cycle

In our implementation, LogitBoost [7] (with decision
stumps) was adopted as the underlying classification algo-
rithm. The Weka [11] data mining library was also used in
our implementation, including the LogitBoost function and
the instance handler.

3 Experiments

In order to evaluate the hierarchical learning, we con-
ducted three experiments as follows: the first one has one
single agent with complete training/testing instances (i.e.,
instances with all domain features available); the second
one involves agents fed with partial instances where some
features are missing; the third one consists of eleven agents,
including ten “biased” learners from the second experiment
and one upper-level agent which takes the biased learners’
classification results as its inputting features.

To perform the experiments, we randomly generate in-
stances using a simulated 5-class data model adapted from
[7]. This model assumes all instances have ten attributes
randomly drawn from a 10-D Gaussian distribution, and
the decision boundaries are determined by properly choos-

ing the thresholds r =

√

∑

10

i=1
x2

i
such that approximately

equal number of instances will be assigned to each class.

3.1 Experiment 1: Complete Training Instances

In experiment 1, the learner was always fed with com-
plete instances. Using 5,000 independently drawn training
instances and another 5,000 testing instances, the testing re-
sults were as shown in Figure 3. The error curve begins
with 0.7532 and then gets lower and lower, stabilized af-
ter around 1,500 iterations. The best testing error rate is

0.1614, achieved by the classifier trained with 1,811 itera-
tions. We attribute such a good performance to Boosting.

0.1614

(1811 Iterations)


Iteration


E
rr

or
 R

at
e


Figure 3. Experiment 1 — test error curve

3.2 Experiment 2: Partial Training Instances

In experiment 2, we set up ten learning agents, each han-
dled instances with a different missing attribute. The same
sets of complete training/testing instances were delivered
to these ten agents, but they selectively ignored the val-
ues of their respective missing attribute. By training each
agent’s classifier with 5,000 independently drawn instances
and testing with another 5,000 ones, the results were as
shown in Figure 4. The error rates rose more than twice
as compared with experiment 1. We can attribute such per-
formance decrease to the use of partial instances.

0.3424

(i = 478)


0.3506

(i = 467)


0.3398

(i = 451)


0.3472

(i = 429)


0.3452

(i = 584)


0.3426

(i = 581)


0.3554

(i = 537)


0.3500

(i = 539)


0.3478

(i = 523)


0.3586

(i = 512)


E
rr

or
 R

at
e


Iteration


Iteration


E
rr

or
 R

at
e


Average Error Rate: 0.34796


Figure 4. Experiment 2 — test error curves

3.3 Experiment 3: The Hierarchical Learning

Instance

Generator


Agent 0


Agent 1

(Missing X1)


Agent 2

(Missing X2)


Agent 3

(Missing X3)


Agent 10

(Missing X10)


Result


...


Res
ul

t
 Result


Result


Figure 5. Experiment 3: hierarchical learning

In this experiment, as shown in Figure 5, we used a 2-
layered structure to organize 11 agents, where Agents 1..10



were trained with partial instances, and Agent 0 treated the
classification results of Agents 1..10 as input attributes to
produce the final classifications. Instances used by Agent 0
are in the format of (ID, result of Agent 1, .., result of Agent
10), in which the attributes other than ID are generated and
delivered by the bottom-level agents in real-time. For the
upper-level agent to make a final decision, we adopted ma-
jority vote as its decision strategy.

We performed classification on the same set of 5,000
testing instances used in the previous experiments, result-
ing an error rate of 0.2612, which is only three fourth of
that produced by a lower-level agent.

3.4 Result Analysis

The results of each experiment using the same testing
instances are summarized in Figure 6 (the solid lines). The
error rate can be lowered to 0.2612 if an additional agent
is employed to coordinate the “biased” agents. It is worse
than one agent learning with complete instances by 61.8%
but better than those with partial instances by 24.9%.

Single Agent with

Complete Instances


Single Agent with

Partial Instances


Hierarchical

Learning


0.1614


0.34796


0.2612


E
rr

or
 R

at
e


0.
0


0.
1


0.
2


0.
3


0.
4
 0.36066


0.2778


0.1858


Data Set 1

Data Set 2


Figure 6. Results of the experiments

The dashed lines in Figure 6 show the result of another
series of experiments which use the same set of agents to
do classification on a new simulated data set with 5,000
testing instances. The result is consistent with the previ-
ous experiments. The performance of hierarchical learning
is worse than one learning agent using complete instances
by 49.5% but better than those using partial instances by
23.0%. Learning with missing attributes would lead to
higher error rates, but the error rate can be reduced by ap-
plying a second level of coordination on these agents.

The hierarchical learning is based on other agents’ clas-
sifications to produce the final result. A higher-level agent
can sometimes be misled by the others if most of the lower-
level agents mis-classify the instances. Although the hier-
archical learning does not perfectly work all the time due
to either other agents’ errors or its own mistakes, the over-
all performance is still good enough. The error rate is ex-
pectably worse than agents using complete instances but
significantly better than those using partial instances.

4 Conclusion

In this paper, we described the approach of hierarchi-
cal learning for supporting collaborative decision mak-
ing. Then we conducted three experiments using learning-
enabled R-CAST agents to evaluate the performance of this
approach. Our results show that it can significantly improve
the outcome of a group of biased learners.

The hierarchical learning concept can also be viewed as
a way taking advantage of the strength of diversity. The
results encourage us to further discover the potential theo-
retical roots. For future work, we also plan to apply this
concept to enhance group-decision making and experience
acquisition within a multi-context dynamic environment.

References

[1] J. A. Cannon-Bowers, E. Salas, and S. Converse. Cognitive
psychology and team training: Training shared mental mod-
els and complex systems. Human Factors Society Bulletin,
33:1–4, 1990.

[2] X. Fan, B. Sun, S. Sun, M. McNeese, and J. Yen. RPD-
enabled agents teaming with humans for multi-context deci-
sion making. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 34–41, Hakodate, Hokkaido, Japan, May 2006.

[3] X. Fan, S. Sun, M. McNeese, and J. Yen. Extending
recognition-primed decision model for human-agent collab-
oration. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 945–952, The Netherlands, July 2005.

[4] X. Fan, J. Yen, and R. A. Volz. A theoretical framework on
proactive information exchange in agent teamwork. Artifi-
cial Intelligence Journal, 169(1):23–97, 2005.

[5] Y. Freund. Boosting a weak learning algorithm by majority.
In Information and Computation, volume 121, pages 256–
285, 1995.

[6] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In International Conference on Machine
Learning, pages 148–156, 1996.

[7] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting. The Annals of
Statistics, 28(2):337–407, 2000.

[8] C. Gonzalez, J. F. Lerch, and C. Lebiere. Instance-based
learning in dynamic decision making. Cognitive Science,
27(4):591–635, 2003.

[9] G. A. Klein. The recognition-primed decision model. In
Sources of Power: How People Make Decisions, chapter 3,
pages 15–30. The MIT Press, 1998.

[10] R. E. Schapire. The strength of weak learnability. Machine
Learning, 5(2):197–227, 1990.

[11] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2 edition, 2005.

[12] J. Yen, X. Fan, S. Sun, T. Hanratty, and J. Dumer. Agents
with shared mental models for enhancing team decision-
makings. Journal of Decision Support Systems, 41(3):634–
653, 2006.


