
A Market-based Adaptation for Resolving Competing Needs for Scarce Resources

Rui Wang, Tracy Mullen, Viswanath Avasarala, John Yen
College of Information Sciences and Technology,

The Pennsylvania State University,
University Park, PA 16802 USA

{rwang, tmullen,vavasarala jyen}@ist.psu.edu

Abstract

The dynamic nature of many real-world domains (e.g.,
military, emergency first response and hurricane relief,
etc) requires adaptive resource allocation to respond to
changes in the environment that trigger additional
resource requirements. Since the total resources are
limited, there are often conflicts among various tasks
regarding their resource needs. Thus, resources must be
reallocated in order to maximize global utility for the
current situation. This problem is further complicated
when scarce resources are owned by distributed teams,
each of which needs to allocate resources among tasks
assigned to them, because each team has limited
information about the other teams’ resources and states.
In this paper, we propose a market-based approach that
uses an agent-based auction mechanism to enable teams
to communicate and coordinate their utility information
about possibly competing resource needs. As a result, the
teams can collaboratively assess trade-offs among
competing needs to allocate resources efficiently.

1. Introduction

Uncertain, dynamic environments afford challenging
domains for multi-agent systems (MAS) applications,
especially when they face the situation with scarce
resources. Although centralized mechanisms to solve the
optimization problem can provide quality-guaranteed
solutions, they are often not scalable and can run into a
“bottleneck” problem. Distributed solutions can be more
flexible and more reliable; although those benefits are
obtained via extra efforts in coordinating multiple agents.
The coordination problem becomes more challenging
when scarce resources are distributed among different
teams initially, since each team has limited knowledge
about the other teams’ resources and states. This paper
presents recent research on designing and implementing a
market-based mechanism to optimize the reallocation of
limited resources dynamically among distributed teams by
making trade-offs among competing resource needs based
on exchanging utility-based price information.

Market mechanisms (e.g., auctions) have been widely
applied to software agents in the e-business. Under the
right conditions, each individual agent tries to maximize
its own profit in the market, which under the right
conditions leads to a globally efficient outcome [4].
Market architectures connect sellers with buyers using
price to provide a means for low-cost communication of
value. There are several market-based implementations
for MAS successfully demonstrated in simulations [4, 15]
and physical robot-based applications [9]. For those
market-based systems mentioned above, they have a
common feature that a centralized auctioneer is used to
allocate resources among agents or teams. In contrast, our
system doesn’t have a fixed auctioneer agent but each
participating agent can dynamically take the role of
auctioneer as well as buyer and seller. While the
auctioneer also often serves as a trusted third party, since
all the agents are cooperative in our system, this aspect is
not a concern.

There are two different types of agents in a team. One
type is task agents, who are responsible for executing a
task plan when its preconditions and resource requirement
are met. The other is a coordinator agent, who tries to not
only satisfy the resource requirement of an assigned task
for the team it belongs to, but also to maximize the global
utility of scarce resources. One coordinator collaborates
with coordinators in other teams to solve this resource
optimization problem dynamically. Here we use a market-
based mechanism to enable coordinator agents to assess
competing resource needs and adaptively allocate the
needed resources efficiently.

In this paper, we investigate how an agent coordinator
leveraged on R-CAST architecture can correctly evaluate
the utility of one resource item or a bundle of resources to
its own plan, and how to reach an agreement on
reallocating scarce resources by sharing the evaluation
information with other planners. Background knowledge
on R-CAST agent architecture and the market-based
optimization are given in Section 2. The resource
optimization mechanism is elaborated in Section 3. The
problem domain, simulation environment and scenario
design are described in Section 4. Some preliminary

experiment results are presented in Section 5, and Section
6 concludes the paper.

2. Background

2.1. The R-CAST Agent Architecture

The R-CAST agent architecture [5] is built on top of
the concept of shared mental models [2], the theory of
proactive information delivery [7], and the recognition-
primed decision (RPD) model [11]. A collaborative RPD
decision process was implemented in R-CAST with
features such as relevant information sharing, decision
process monitoring, and decision adaptation.

The major components of R-CAST are presented in
Figure 1. The RPD module uses domain knowledge, past
experiences and the current situation awareness to
produce a new or adapt an existing decision.

Figure 1 [4]: The R-CAST agent architecture

This study takes advantages of two important modules

in R-CAST, which are the knowledge base (KB) and the
process manager. The knowledge base is a forward-
chaining rule-based system, which enables the agent to
maintain what it believes regarding the external world and
the other agents. The unique feature is that it is able to
reason about missing information relative to the current
tasks, and proactively find ways to satisfy the inferred
information requirements. Also, it is proof-preserving in
the sense that the proof-trace of a query is preserved,
which is important when information link-analysis is
needed, and can be very useful in planning for information
gathering in subsequent activities. The process manager
manages the templates of predefined plans, each of which
contains preconditions, termination conditions, effects,
and a process body. In addition, we extend the plan
templates to include resource requirements for this study,
which will be described later in Section 3. The process
manger can instantiate plan instances from appropriate
templates. The execution of plan instances is scheduled by

the process manger based on the constraints associated
with the instances and the KB’s current state.

2.2. The Market-based Optimization

In Section 1, we mentioned some related work in
market-based optimization. Another example is file
allocation in a distributed computer system [14]. Market-
based approaches enable a natural decomposition of the
problem, which is well suited for distributed environments.
Here we briefly review how market mechanisms can be
applied to such distributed resource allocation problems.

Auction mechanisms determine who should get the
goods and at what prices. In many auction environments,
items being traded are complements. For example, a left
shoe and right shoe are complements that have greater
utility acquired together than either acquired individually.
Combinatorial auctions [3, 10, 13] allow bidders to bid on
combinations of items, and thus directly express these
synergies. Each bidder can bid on item bundles, and the
auctioneer chooses the set of bids that maximizes the total
value.

However, selecting the winning bids, call the general
winner-determination problem (WDP), is NP -complete
for combinatorial auctions [3, 17]. There are two types of
approaches to optimal winner determination in the general
case. The first one is using powerful general-purpose
mathematical programming software. A general optimal
winner determination problem can be formulated as a
mixed integer problem so it can be run directly on
standard highly optimized software packages such as
CPLEX [1]. The second approach is developing search
algorithms specifically for winner determination,
combining AI search techniques and domain-specific
heuristics. Recently researchers had made a great deal of
progress in developing algorithms solving WDP
efficiently in this way. For example, the BOB algorithm
[16, 17] can solve auctions involving hundreds of items
and thousands of bids within 10 seconds. Since our
research doesn’t focus on designing algorithms to solve
WDP more efficiently, here we adopt the first approach
and use optimization software based on integer
programming to optimize the resource allocation. Thus,
different agents can place bids on bundles of resource
items they need. And the auctioneer decides winners of
this combinatorial auction to maximize the utility of the
total resource items.

A great deal of research has been devoted to solving
the resource allocation problem via auction mechanism
explained above. However, there are some hidden
assumptions simplifying this problem. First, most of them
start directly with resource allocation without considering
alternative options of resources to complete a task.
Second, the value of each task’s expected utility function

only has two values: zero and another number. In other
words, the expected outcome of a task is either success or
failure and there is no reward for partially completed tasks.
Third, resource allocation doesn’t adapt to changes in the
situation. Our work addresses those issues and uses a
market-based approach to allocate resources adaptively.

3. Resource Management

Resource allocation plays an important role in
successful plan execution. Some resources are physical,
such as materials, machines or money. Some resources are
more abstract facts like possibilities and availabilities.
Different from information, which can be shared by
multiple agents at the same time, resources can be
consumed only by one agent at a time. In this paper, we
focus on scarce resources, which are in limited supply so
that competing needs for them may arise. Many planning
systems have integrated the scheduling of resources by
including some sort of Constraint Satisfaction Problem or
Linear Programming problem solver [6, 12, 13]. In all
these cases, the “best” or optimal solution may mean
maximizing profits, minimizing costs, or achieving the
best possible quality, given scarce resources.

3.1. Resource Representation

An agent coordinator maintains its belief about the
status of all known resources in the knowledge base. In
order to efficiently organize such knowledge, there are
two structures designed for representing resources. The
first is “resource class”, which is used to describe multiple
instances of the same type resources (i.e., instances with
the same functionality) or uncountable resources which
may be measured (e.g., 5 gallons of gasoline). Also, a
resource class has a type field indicating whether this kind
of resource is consumable or reusable. The second is
“resource instance”, which represents an individual
resource item. A resource instance is associated with a
class name that it belongs to. It also has a unique id and
domain-specific attributes. It provides more detailed
information such as the ownership, its current status and
what plans may use it within what time periods. Formats
of those two structures are listed below:

(Resource_Class (class ?n)
 (number/amount ?x)
 (type ?t)
 (attributes + values)
)

(Resource_Instance (class ?n) (id ?i)
(attributes + values)

(ownership ?owner)
(status available/occupied/reserved)
((plan ?id)(begin_action ?ida)(end-

action ?idb))
)

As mentioned in the previous section, a predefined
plan template specifies its requirement for resources. In
order to ensure that the instantiated plan can be executed
successfully, this minimum resource requirement must be
fulfilled. In other words, the resource requirement can be
viewed as a set of constraints just like the preconditions to
satisfy. Let’s take a look of the example of a plan template
below:

(plan deliver_to(?dest ?obj)

(res-requirement (helicopter 2)(pilot
2)

 alternatives (1 (truck 3)(driver 3))
)
(termcondition (current_loc ?dest =))
(utility 500)
(process
 (seq
 (load ?obj)
 (move_to ?dest)
 (unload ?obj)
)

)
)

This plan template defines a task “deliver the object y to

the destinationx ” when the variable ?obj is bound to an

object y (e.g., a pile of sandbags) and the variable ?dest

is bound to a place’s namex (e.g., a leaking levee at New
Orleans). The minimum resources required by this plan
are two helicopters and two pilots or three trucks and
three drivers. The first set of resources is the default
option, while the second one is an alternative to satisfy the
resource requirement. It is easy to understand why the
default option is preferred since it’s much faster to deliver
the object to the destination using helicopters than using
trucks, especially when the delivery task is in an urgent
situation.

Similar to how information needs are generated in a
CAST agent [8], a coordinator agent built on top of R-
CAST can infer missing resources by comparing the
resource requirement defined in the target plan and the
current information on resource states in its knowledge
base. As soon as the coordinator figures out what
resources are missing to perform a task for its team, it will
send out requests for those missing resources to other

coordinators whose teams may be potential providers, and
trigger the process of market-based resource optimization.

3.2. Market-based Resource Optimization

3.2.1 Resource Auctions

The market for agent coordinators to reallocate
resources is based on auctions for resources that multiple
tasks are competing for. When an agent coordinator
detects missing resources for its team to carry out a
scheduled task, it generates a request for a set of those
resources denoted byΑ with a maximum price that it is
willing to pay for getting them and sends the request to the
auctioneer. The maximum price is calculated based on the
instantiated task’s estimated utility, which will be further
explained later. Then, the auctioneer forwards the request
to all other coordinators whose teams may possess the
requested resources. Assume each coordinator receiving
such a request has a set of its own resources isΒ .and let
ℜ = ΒΑI . Each coordinator generates a bid for each

element in its power set of ℜ except the empty set. The
bid price is decided by estimating how the resource(s)
affects the coordinator’s own team completing its assigned
task and the task’s expected utility. All bids from all
potential providers are sent to the auctioneer, who
determines the winning bid(s). The role of an auctioneer
can be dynamically assigned to any coordinator based on
their current work load, since usually the optimization
process involves much computational cost.

3.2.2 Bid Estimation

Given an instantiated task (a plan instance)iT , there

are two major factors affecting its expected

utility)(iTEU :

• The probability that iT is fulfilled to certain degree

(let St denote such a status of the task):)(tSP

• The utility of iT at the status tS :)]([ti STU

The utility of a partially completed task can be easily
calculated based the percentage of completing given goals.

However, the probability that the task iT reaches a status

tS depends on many possible factors like conditions,

resource requirements, or even uncertainty. Let

mtSfuncSTU tti ,...,1),()]([==

),()(RCfuncSinTP ti = , C denotes conditions

and R denotes resource status when iT is executed, and

iT ends up into tS , then the expected utility of iT is:

∑∑
=

×=×=
m

t
tti

S
tii RCfSfSinTPSTUTEU

t 1

),()()()]([)(

A simplified version of the stated problem assumes

each task will only have two possible cases after executed:
succeeded or failed. Suppose in a taskT , there are n
conditions and m resource requirements. For each

condition iC , the probability that iC is satisfied is

ii PtureCP ==)((i = 1…n); for each resource

requirement jR , the probability that jR is satisfied is

jj PtureRP ==)((j = 1…m).

So the probability that T will succeed is:

succP = (∏
=

n

i
iP

1
∏

=

m

j
jP

1

) (1- eP), where eP is the

probability of exception, and the probability that T will

fail is: 1- succP .

Suppose the utility of task T is zero if it fails, and the

utility of a successfully executed task T is tU , thus the

expected utility of task T is:

)(TEU = 0)1(×−+× succtsucc PUP

 = (∏
=

n

i
iP

1
∏

=

m

j
jP

1

) (1- eP)

The tU can be determined by combining the base

utility value defined in the plan template (e.g., (utility
500))and the variable binding utility rules in the plan
instance.

The maximum willing price for missing resources is
primarily calculated based on the expected utility of the
task. However, when a resource coordinator decides the
bid price responding a request, it also has to consider the
cost switching resources from its current team to the
requesting team.

3.2.3 Combinatorial Auction

We use combinatorial auctions to handle bids for

bundled resources. Let iB denote the bundle of missing

resources for a task and ip is the bidding price for iB .

Bidders (i.e., resource coordinators who are seeking for
missing resources) submit n bids as bundle/price pairs

(iB , ip). Given the fact that the auctioneer may accept

any combination of non-conflicting bids and charge the
sum of the associated prices (or called OR bidding), and a

decision variable }1,0{∈ix for each bid (iB , ip), the

WDP for combinatorial auctions becomes the following
problem:

Maximize ∑
=

⋅
n

i
ii xp

1

subject to ∑
∈

≤
)(

1
rBidsi

ix for all

resource itemsr , where }|],1[{)(iBrnirBids ∈∈=

We implemented Sandholm’s CABOB algorithm [17]
in the auctioneer agent for solving the WDP. The
auctioneer collects all bids and runs the algorithm to get

the value of ix for each bid. The optimal allocation to

those bidders is determined based on the result.
In addition, the auction should be done in a timely

manner, which means there is a deadline associated with a
task’s resource requirement. The task must have all
required resources before the deadline or it will fail to be
executed. Since it could be delayed for a resource seller
to report its bids to the auctioneer, when the deadline is
approaching, the auctioneer has to make the decision with
incomplete information. Even though such an “optimal”
solution is not really optimal, it avoids the failure of
executing a task, which may result into significant utility
loss. Since concurrent resource requests usually have
different deadlines, the auction may carry out in an
iterative way.

4. Setting Stage for Experiments

In this section we describe the problem domain and
scenario design used in the experiments.

4.1. Problem Domain

In a dynamic environment, intelligent agents usually

have to face unexpected changes, which will force them to
adapt current plans in order to keep the execution from
failure. Since those agents are cooperative, they may
exchange information and resources in order to maximize
the global utility of those plans under the updated
situation. The problem studied here is how an agent
evaluates the tradeoff so that it can make a correct
decision whether to switch its own resources to its
teammates or not. The following conditions are typical in
the domain being studied: first, the total resources are
limited; second, there may be multiple options, each of
which has different resource requirements, to accomplish

a task; third, there is an initial resource allocation so that
different teams have private resources; fourth, there is cost
associated with sharing information about own resources
to other teams; last, information of utilities (both resource
utility and plan utility) is distributed initially.

4.2. A Hurricane Relief Scenario

In this scenario, a Category 5 hurricane hits a Major
Metropolitan Area (MMA). Sustained winds are at 160
mph with a storm surge greater than 20 feet above normal.
As the storm moves closer to land, massive evacuations
are required. Certain low-lying escape routes are
inundated by water anywhere from 5 hours before the eye
of the hurricane reaches land. In addition to the massive
destruction caused by the hurricane itself, there are also
areas within the MMA and scattered inland areas that
have sustained severe damage from tornadoes that were
generated by the storm. Storm surges and heavy rains
cause catastrophic flooding to low lying areas. Rainfall
from the hurricane, in combination with earlier storms,
causes significant flooding in multiple states along the
coast. We focus on the following three hurricane relief
tasks:

1) Delivering foods to a large group people who have
been isolated in a flooded area (priority level: 3, deadline:
in 24 hours).

2) Transferring sands bags to a specific place in order
to fix a leaking levee (priority level: 4, deadline: in 10
hours).

3) Rescuing a few of persons in a dangerous situation
or they will be overflooded soon (priority level: 5,
deadline: in 2 hours).

Each task is associated with priority information and
the deadline that it must complete before. The priority
level contributes to the expected utility of a task and the
deadline determines when the task’s preconditions and
resource requirements must be satisfied. The most critical
resource shared among those tasks is a troop of
helicopters operated by pilots. One helicopter may switch
from one task to another task dynamically. Such a switch
is not arbitrary but really depends on many facts in the
current situation (e.g., the priority of an emerging task, the
task’s deadline, and the current location of helicopters,
etc).

The scenario is designed as Figure 2 shows. One
helicopter H1 is in the process of carrying out the task
Deliver_Food (dest, food, deadline), which requires the
helicopter to arrive at the destination with loaded food
before the predefined deadline. Another helicopter H2 is
engaged in a task named Fix_Levee (loc, bags, deadline),
which H2 has to transfer sand bags to the specific location
to fix the broken dam. Meanwhile, there is an emerging
task Rescue_People (dest, safe_place, deadline) which

requires at least one helicopter as the resource to rescue a
group people from a very dangerous place before they will
be flooded at the estimated deadline. More helicopters are
desirable in case that there are too many people to be
rescued. Both coordinators A1 and A2, representing tasks
Deliver_Food and Fix_Levee respectively, receive the
request from the coordinator A3 of the task
Rescue_People. Each of them needs to decide whether to
switch its own helicopter from itself to the emerging task
in order to maximize the global outcomes. In order to
avoid redundant resource transferring, the resource
requester will also make a decision to select the right
provider in case that there are multiple willing providers.
In this case, supposing A3 places a maximum willing
price 500 on its request for one helicopter: (?h, 500,
Rescue_People), and A1 generates a bid for its own
helicopter H1 at a price 300: Bid (H1, 300, Deliver_Food)
and A2 generates a bid for its own helicopter H2 at a price
400: Bid (H2, 400, Fix_Levee), it turns out the bid from
A1 will be accepted finally and H1 will be switched from
the task Deliver_Food to the task Rescue_People. The
expected global utility will be 900, which is more than the
previous expected global utility 700 if we don’t consider
the switching cost here.

Urgent 911
call

Plan 1:Fix_Levee(t1) Plan 2: Deliver_Food(t2)

Levee (t1)

Emergency plan:
Rescue_People(t3)

Island (t3)

Shelter (t2)

H1

H2

A1

A2

Plan adaptation

Planner agents

Helicopters

Figure 2: A scenario of hurricane relief

5. Experimental Results & Analysis

We tested the proposed approach in a simulation of
hurricane relief scenario. There are three types of tasks
which are described in the previous section. Multiple
instances of each task are triggered randomly in the
simulator. The initial resource allocation is configurable
before starting the run. We are using the following
configuration for initial resource allocation in the
experiment:

Table 1: Initial Resource Allocation

The simulation starts with the initial configuration.

There are ten total resource instances [r1, …, r10]. As the
time goes on, emerging tasks are generated randomly and
raise competing resource requests. The total utility of all
succeeded tasks are calculated after the process terminates.
We use the number of total triggered tasks (successful or
unsuccessful) as the control variable to demonstrate how
our approach performs as it increases comparing to the
other approach that uses a simple “request and reply” way
to handle resource requests.

The Global Utility

0

500

1000

1500

2000

2500

3000

3500

3 4 5 6 7

number of total tasks

g
lo

ba
l

ut
il

i
ty

CA-based
Resource
Reallocation

Simple
Resource
Switching

Figure 3: The global utility of different
solutions

From the diagram above, we can see that the global

utility is significantly enhanced using our solution, while
the case that a resource provider always gives out the
requested resources doesn’t fully utilize the limited
resources.

Completed Tasks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 4 5 6 7

number of total tasks

n
u
m
b
e
r
o
f

c
o
m
p
le
t
e
d

t
a
sk
s

Simple
Resource
Switching
CA-based
Resource
Reallocation

Figure 4: The number of completed tasks

Task: Deliver_Food Rescue_People Fix_Levee

Instances 1 1 1

Resource
instances

r1, r2, r3 r6, r7 r3

However, from the figure 4, we can see that the number
of completed tasks may not improve using the resource
optimization comparing to the strategy of switching
resources simply upon requests. It is because some task
instances may have very high expected utilities. So it is
worthwhile to switch resources from several other tasks of
low expected utilities to satisfy such a task’s resource
requirement. Thus, even though the total complete number
of tasks may decrease in some cases, the global utility is
still maximized.

6. Conclusion

We have introduced a new market-based adaptation for
coordinating distributed tasks to solve their competing
resource needs and make the maximum utilization of
scarce resources. Experimental results in a simulated
hurricane relief scenario show that resources can be
reallocated dynamically and efficiently through the
auction mechanism and generate an optimal solution in a
timely manner.

Currently, we are performing further experiments
involving more types of resources in a more complex
environment, which will show the scalability and
robustness of our adaptation mechanism. An interesting
issue to be explored is alternative resource reasoning.
Alternative resources not only make the solution more
flexible, but also help the coordinator choose the most
suitable option to compete the task not only for its own
sake but also for the global objective. In addition, in order
to reduce unnecessary communication costs, we are trying
to enable a coordinator to infer who are most likely to
possess the needed resources so that it can only send
requests to those agents instead of broadcasting to all
others.

References

[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer
programming for combinatorial auction winner
determination. In Proceedings of the 4th International
Conference on Multiagent Systems, pages 39-46, 2000.
[2] J. A. Cannon-Bowers, E. Salas, and S. Converse.
Cognitive psychology and team training: Training shared
mental models and complex systems. Human Factors
Society Bulletin, 33:1-4, 1990.
[3] P. Cramton, Y. Shoham, and R. Steinberg.
Introduction to Combinatorial Auctions. Combinatorial
Auctions, MIT Press, 2005.
[4] M. B. Dias, D. Goldberg, and A. Stentz. Market-based
multirobot coordination for complex space applications.
In the 7th International Symposium on Artificial
Intelligence, Robotics and Automation in Space(i-
SAIRAS), 2003.

[5] X. Fan, S. Sun, M. McNeese, and J. Yen. Extending
the recognition-primed decision model to support human-
agent collaboration. In AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous
agents and multiagent systems, pages 945-952. ACM
Press, 2005.
[6] S. A. Wolfman and D. S. Weld. The LPSAT engine
and its applications to resource planning. In Proceedings
of the sixteen International Joint Conference on Artificial
Intelligence (IJCAI-99), San Mateo, CA, Morgan,1999.
[7] X. Fan, J. Yen, and R. A. Volz. A theoretical
framework on proactive information exchange in agent
teamwork. Artificial Intelligence, 169:23-97, 2005.
[8] X. Fan, R. Wang, S. Sun, J. Yen, and R. A. Volz.
Context-Centric Needs Anticipation Using Information
Needs Graphs. Journal of Applied Intelligence, Vol. 24,
No. 1, 2006.
[9] B. P. Gerkey and M. J. Mataric. Sold!: Auction
methods for multirobot control. IEEE Transactions on
Robotics and Automation Special Issue on Multi-Robot
Systems, 18(5):758-768, October 2002.
[10] L. Jimsberger and B. Grosz. A combinatorial auction
for collaborative planning. In Proceedings of ICMAS-
2000.
[11] G. A. Klein. Recognition-primed decisions. In W. B.
Rouse, editor, Advances in man-machine systems
research, volume 5, pages 47-92. JAI Press, 1989.
[12] J. Koehler. Planning under resource constraints. In
Proceedings of the Thirteenth European Conference on
Artificial Intelligence (ECAI-98), John Wiley & Sons,
1998.
[13] W. Walsh, M. Wellman, and F. Ygge. Combinatorial
auctions for supply chain formation. ACM Conference on
Electronic Commerce, 2000.
[14] J. F. Kurose and R. Simha. A microeconomic
approach to optimal resource allocation in distributed
computer systems. IEEE Transactions on Computers,
38(5):705-717, 1989.
[15] T. Mullen, V. Avasarala, D. L. Hall. Customer-
Driven Sensor Management. IEEE Intelligent Systems,
21(2): 41-49, March/April 2006.
[16] T. Sandholm and S. Suri. BOB: Improved winner
determination in combinatorial auctions and
generalizations. In Artificial Intelligence, 2003.
[17] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: A fast optimal algorithm for combinatorial
auctions. In International Joint Conference of Artificial
Intelligence, pages 520–526, 1999.

