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Abstract 
 

The dynamic nature of many real-world domains (e.g., 
military, emergency first response and hurricane relief, 
etc) requires adaptive resource allocation to respond to 
changes in the environment that trigger additional 
resource requirements. Since the total resources are 
limited, there are often conflicts among various tasks 
regarding their resource needs. Thus, resources must be 
reallocated in order to maximize global utility for the 
current situation. This problem is further complicated 
when scarce resources are owned by distributed teams, 
each of which needs to allocate resources among tasks 
assigned to them, because each team has limited 
information about the other teams’ resources and states. 
In this paper, we propose a market-based approach that 
uses an agent-based auction mechanism to enable teams 
to communicate and coordinate their utility information 
about possibly competing resource needs. As a result, the 
teams can collaboratively assess trade-offs among 
competing needs to allocate resources efficiently. 

 
1. Introduction 
 

Uncertain, dynamic environments afford challenging 
domains for multi-agent systems (MAS) applications, 
especially when they face the situation with scarce 
resources. Although centralized mechanisms to solve the 
optimization problem can provide quality-guaranteed 
solutions, they are often not scalable and can run into a 
“bottleneck” problem. Distributed solutions can be more 
flexible and more reliable; although those benefits are 
obtained via extra efforts in coordinating multiple agents. 
The coordination problem becomes more challenging 
when scarce resources are distributed among different 
teams initially, since each team has limited knowledge 
about the other teams’ resources and states. This paper 
presents recent research on designing and implementing a 
market-based mechanism to optimize the reallocation of 
limited resources dynamically among distributed teams by 
making trade-offs among competing resource needs based 
on exchanging utility-based price information.  

Market mechanisms (e.g., auctions) have been widely 
applied to software agents in the e-business. Under the 
right conditions, each individual agent tries to maximize 
its own profit in the market, which under the right 
conditions leads to a globally efficient outcome [4].  
Market architectures connect sellers with buyers using 
price to provide a means for low-cost communication of 
value.  There are several market-based implementations 
for MAS successfully demonstrated in simulations [4, 15] 
and physical robot-based applications [9]. For those 
market-based systems mentioned above, they have a 
common feature that a centralized auctioneer is used to 
allocate resources among agents or teams. In contrast, our 
system doesn’t have a fixed auctioneer agent but each 
participating agent can dynamically take the role of 
auctioneer as well as buyer and seller. While the 
auctioneer also often serves as a trusted third party, since 
all the agents are cooperative in our system, this aspect is 
not a concern. 

There are two different types of agents in a team. One 
type is task agents, who are responsible for executing a 
task plan when its preconditions and resource requirement 
are met. The other is a coordinator agent, who tries to not 
only satisfy the resource requirement of an assigned task 
for the team it belongs to, but also to maximize the global 
utility of scarce resources. One coordinator collaborates 
with coordinators in other teams to solve this resource 
optimization problem dynamically. Here we use a market-
based mechanism to enable coordinator agents to assess 
competing resource needs and adaptively allocate the 
needed resources efficiently.  

In this paper, we investigate how an agent coordinator 
leveraged on R-CAST architecture can correctly evaluate 
the utility of one resource item or a bundle of resources to 
its own plan, and how to reach an agreement on 
reallocating scarce resources by sharing the evaluation 
information with other planners. Background knowledge 
on R-CAST agent architecture and the market-based 
optimization are given in Section 2. The resource 
optimization mechanism is elaborated in Section 3. The 
problem domain, simulation environment and scenario 
design are described in Section 4. Some preliminary 



experiment results are presented in Section 5, and Section 
6 concludes the paper.  

 

2. Background 
 
2.1. The R-CAST Agent Architecture 
 

The R-CAST agent architecture [5] is built on top of 
the concept of shared mental models [2], the theory of 
proactive information delivery [7], and the recognition-
primed decision (RPD) model [11]. A collaborative RPD 
decision process was implemented in R-CAST with 
features such as relevant information sharing, decision 
process monitoring, and decision adaptation. 

The major components of R-CAST are presented in 
Figure 1. The RPD module uses domain knowledge, past 
experiences and the current situation awareness to 
produce a new or adapt an existing decision.  

 
 

 
 
 

Figure 1 [4]: The R-CAST agent architecture 
 
This study takes advantages of two important modules 

in R-CAST, which are the knowledge base (KB) and the 
process manager. The knowledge base is a forward-
chaining rule-based system, which enables the agent to 
maintain what it believes regarding the external world and 
the other agents. The unique feature is that it is able to 
reason about missing information relative to the current 
tasks, and proactively find ways to satisfy the inferred 
information requirements. Also, it is proof-preserving in 
the sense that the proof-trace of a query is preserved, 
which is important when information link-analysis is 
needed, and can be very useful in planning for information 
gathering in subsequent activities. The process manager 
manages the templates of predefined plans, each of which 
contains preconditions, termination conditions, effects, 
and a process body. In addition, we extend the plan 
templates to include resource requirements for this study, 
which will be described later in Section 3. The process 
manger can instantiate plan instances from appropriate 
templates. The execution of plan instances is scheduled by 

the process manger based on the constraints associated 
with the instances and the KB’s current state.  

 

2.2. The Market-based Optimization 
 

In Section 1, we mentioned some related work in 
market-based optimization. Another example is file 
allocation in a distributed computer system [14].  Market-
based approaches enable a natural decomposition of the 
problem, which is well suited for distributed environments. 
Here we briefly review how market mechanisms can be 
applied to such distributed resource allocation problems. 

Auction mechanisms determine who should get the 
goods and at what prices. In many auction environments, 
items being traded are complements.  For example, a left 
shoe and right shoe are complements that have greater 
utility acquired together than either acquired individually. 
Combinatorial auctions [3, 10, 13] allow bidders to bid on 
combinations of items, and thus directly express these 
synergies. Each bidder can bid on item bundles, and the 
auctioneer chooses the set of bids that maximizes the total 
value.  

However, selecting the winning bids, call the general 
winner-determination problem (WDP), is NP -complete 
for combinatorial auctions [3, 17]. There are two types of 
approaches to optimal winner determination in the general 
case. The first one is using powerful general-purpose 
mathematical programming software. A general optimal 
winner determination problem can be formulated as a 
mixed integer problem so it can be run directly on 
standard highly optimized software packages such as 
CPLEX [1]. The second approach is developing search 
algorithms specifically for winner determination, 
combining AI search techniques and domain-specific 
heuristics. Recently researchers had made a great deal of 
progress in developing algorithms solving WDP 
efficiently in this way. For example, the BOB algorithm 
[16, 17] can solve auctions involving hundreds of items 
and thousands of bids within 10 seconds. Since our 
research doesn’t focus on designing algorithms to solve 
WDP more efficiently, here we adopt the first approach 
and use optimization software based on integer 
programming to optimize the resource allocation. Thus, 
different agents can place bids on bundles of resource 
items they need. And the auctioneer decides winners of 
this combinatorial auction to maximize the utility of the 
total resource items. 

A great deal of research has been devoted to solving 
the resource allocation problem via auction mechanism 
explained above. However, there are some hidden 
assumptions simplifying this problem. First, most of them 
start directly with resource allocation without considering 
alternative options of resources to complete a task. 
Second, the value of each task’s expected utility function 



only has two values: zero and another number. In other 
words, the expected outcome of a task is either success or 
failure and there is no reward for partially completed tasks. 
Third, resource allocation doesn’t adapt to changes in the 
situation.  Our work addresses those issues and uses a 
market-based approach to allocate resources adaptively.  
 

3. Resource Management 
 

Resource allocation plays an important role in 
successful plan execution. Some resources are physical, 
such as materials, machines or money. Some resources are 
more abstract facts like possibilities and availabilities. 
Different from information, which can be shared by 
multiple agents at the same time, resources can be 
consumed only by one agent at a time. In this paper, we 
focus on scarce resources, which are in limited supply so 
that competing needs for them may arise. Many planning 
systems have integrated the scheduling of resources by 
including some sort of Constraint Satisfaction Problem or 
Linear Programming problem solver [6, 12, 13]. In all 
these cases, the “best” or optimal solution may mean 
maximizing profits, minimizing costs, or achieving the 
best possible quality, given scarce resources.  

 
3.1. Resource Representation 
 

An agent coordinator maintains its belief about the 
status of all known resources in the knowledge base. In 
order to efficiently organize such knowledge, there are 
two structures designed for representing resources. The 
first is “resource class”, which is used to describe multiple 
instances of the same type resources (i.e., instances with 
the same functionality) or uncountable resources which 
may be measured (e.g., 5 gallons of gasoline). Also, a 
resource class has a type field indicating whether this kind 
of resource is consumable or reusable. The second is 
“resource instance”, which represents an individual 
resource item. A resource instance is associated with a 
class name that it belongs to. It also has a unique id and 
domain-specific attributes. It provides more detailed 
information such as the ownership, its current status and 
what plans may use it within what time periods. Formats 
of those two structures are listed below: 
 
 
 
 
(Resource_Class (class ?n)  
 (number/amount ?x)  
 (type ?t)  
 (attributes + values) 
) 

 
(Resource_Instance (class ?n) (id ?i) 
(attributes + values)  

(ownership ?owner) 
(status available/occupied/reserved)  
((plan ?id)(begin_action ?ida)(end-

action ?idb))  
 ) 
 
 
 

As mentioned in the previous section, a predefined 
plan template specifies its requirement for resources. In 
order to ensure that the instantiated plan can be executed 
successfully, this minimum resource requirement must be 
fulfilled. In other words, the resource requirement can be 
viewed as a set of constraints just like the preconditions to 
satisfy. Let’s take a look of the example of a plan template 
below: 

 
 
 
(plan deliver_to(?dest ?obj) 

(res-requirement (helicopter 2)(pilot 
2)  

 alternatives (1 (truck 3)(driver 3)) 
) 
(termcondition (current_loc ?dest =))  
(utility 500) 
(process 
       (seq 
   (load ?obj) 
   (move_to ?dest) 
   (unload ?obj)  
  ) 

     ) 
 ) 
 

 
 
This plan template defines a task “deliver the object y  to 

the destinationx ” when the variable ?obj is bound to an 

object y (e.g., a pile of sandbags) and the variable ?dest 

is bound to a place’s namex  (e.g., a leaking levee at New 
Orleans). The minimum resources required by this plan 
are two helicopters and two pilots or three trucks and 
three drivers. The first set of resources is the default 
option, while the second one is an alternative to satisfy the 
resource requirement. It is easy to understand why the 
default option is preferred since it’s much faster to deliver 
the object to the destination using helicopters than using 
trucks, especially when the delivery task is in an urgent 
situation.    

Similar to how information needs are generated in a 
CAST agent [8], a coordinator agent built on top of R-
CAST can infer missing resources by comparing the 
resource requirement defined in the target plan and the 
current information on resource states in its knowledge 
base. As soon as the coordinator figures out what 
resources are missing to perform a task for its team, it will 
send out requests for those missing resources to other 



coordinators whose teams may be potential providers, and 
trigger the process of market-based resource optimization.   

 

3.2. Market-based Resource Optimization 
 
3.2.1 Resource Auctions 
 

The market for agent coordinators to reallocate 
resources is based on auctions for resources that multiple 
tasks are competing for. When an agent coordinator 
detects missing resources for its team to carry out a 
scheduled task, it generates a request for a set of those 
resources denoted byΑ  with a maximum price that it is 
willing to pay for getting them and sends the request to the 
auctioneer. The maximum price is calculated based on the 
instantiated task’s estimated utility, which will be further 
explained later. Then, the auctioneer forwards the request 
to all other coordinators whose teams may possess the 
requested resources. Assume each coordinator receiving 
such a request has a set of its own resources isΒ .and let  
ℜ  = ΒΑI . Each coordinator generates a bid for each 

element in its power set of ℜ except the empty set. The 
bid price is decided by estimating how the resource(s) 
affects the coordinator’s own team completing its assigned 
task and the task’s expected utility.  All bids from all 
potential providers are sent to the auctioneer, who 
determines the winning bid(s). The role of an auctioneer 
can be dynamically assigned to any coordinator based on 
their current work load, since usually the optimization 
process involves much computational cost.  

 

3.2.2 Bid Estimation 
 

Given an instantiated task (a plan instance)iT , there 

are two major factors affecting its expected 

utility )( iTEU :  

 

• The probability that iT is fulfilled to certain degree 

(let St denote such a status of the task): )( tSP  

• The utility of iT  at the status tS : )]([ ti STU  

 

The utility of a partially completed task can be easily 
calculated based the percentage of completing given goals. 

However, the probability that the task iT  reaches a status 

tS  depends on many possible factors like conditions, 

resource requirements, or even uncertainty. Let  

mtSfuncSTU tti ,...,1),()]([ ==   

),()( RCfuncSinTP ti = , C  denotes conditions 

and R  denotes resource status when iT  is executed, and 

iT  ends up into tS , then the expected utility of iT  is: 
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A simplified version of the stated problem assumes 

each task will only have two possible cases after executed: 
succeeded or failed. Suppose in a taskT , there are n  
conditions and m  resource requirements. For each 

condition iC , the probability that iC is satisfied is 

ii PtureCP == )( (i = 1…n); for each resource 

requirement jR , the probability that  jR  is satisfied is 

jj PtureRP == )(  (j = 1…m). 

So the probability that T will succeed is: 

succP  = ( ∏
=

n

i
iP

1
∏

=

m

j
jP

1

 ) (1- eP ), where eP  is the 

probability of exception, and the probability that T  will 

fail is: 1- succP . 

Suppose the utility of task T  is zero if it fails, and the 

utility of a successfully executed task T  is tU , thus the 

expected utility of task T is: 
 

)(TEU = 0)1( ×−+× succtsucc PUP  
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The tU  can be determined by combining the base 

utility value defined in the plan template (e.g., (utility 
500))and the variable binding utility rules in the plan 
instance. 

The maximum willing price for missing resources is 
primarily calculated based on the expected utility of the 
task. However, when a resource coordinator decides the 
bid price responding a request, it also has to consider the 
cost switching resources from its current team to the 
requesting team.   
  
3.2.3 Combinatorial Auction 
 

We use combinatorial auctions to handle bids for 

bundled resources. Let iB denote the bundle of missing 

resources for a task and ip is the bidding price for iB . 



Bidders (i.e., resource coordinators who are seeking for 
missing resources) submit n bids as bundle/price pairs 

( iB , ip ). Given the fact that the auctioneer may accept 

any combination of non-conflicting bids and charge the 
sum of the associated prices (or called OR bidding), and a 

decision variable }1,0{∈ix for each bid ( iB , ip ), the 

WDP for combinatorial auctions becomes the following 
problem: 

Maximize ∑
=

⋅
n

i
ii xp

1

subject to ∑
∈

≤
)(

1
rBidsi

ix  for all 

resource itemsr , where }|],1[{)( iBrnirBids ∈∈=  

We implemented Sandholm’s CABOB algorithm [17] 
in the auctioneer agent for solving the WDP. The 
auctioneer collects all bids and runs the algorithm to get 

the value of  ix  for each bid. The optimal allocation to 

those bidders is determined based on the result. 
In addition, the auction should be done in a timely 

manner, which means there is a deadline associated with a 
task’s resource requirement. The task must have all 
required resources before the deadline or it will fail to be 
executed.  Since it could be delayed for a resource seller 
to report its bids to the auctioneer, when the deadline is 
approaching, the auctioneer has to make the decision with 
incomplete information. Even though such an “optimal” 
solution is not really optimal, it avoids the failure of 
executing a task, which may result into significant utility 
loss. Since concurrent resource requests usually have 
different deadlines, the auction may carry out in an 
iterative way.     

 
4. Setting Stage for Experiments 
 

In this section we describe the problem domain and 
scenario design used in the experiments. 

 
4.1. Problem Domain 

 
In a dynamic environment, intelligent agents usually 

have to face unexpected changes, which will force them to 
adapt current plans in order to keep the execution from 
failure. Since those agents are cooperative, they may 
exchange information and resources in order to maximize 
the global utility of those plans under the updated 
situation. The problem studied here is how an agent 
evaluates the tradeoff so that it can make a correct 
decision whether to switch its own resources to its 
teammates or not. The following conditions are typical in 
the domain being studied: first, the total resources are 
limited; second, there may be multiple options, each of 
which has different resource requirements, to accomplish 

a task; third, there is an initial resource allocation so that 
different teams have private resources; fourth, there is cost 
associated with sharing information about own resources 
to other teams; last, information of utilities (both resource 
utility and plan utility) is distributed initially.    
 
4.2. A Hurricane Relief Scenario 
  

In this scenario, a Category 5 hurricane hits a Major 
Metropolitan Area (MMA). Sustained winds are at 160 
mph with a storm surge greater than 20 feet above normal. 
As the storm moves closer to land, massive evacuations 
are required. Certain low-lying escape routes are 
inundated by water anywhere from 5 hours before the eye 
of the hurricane reaches land. In addition to the massive 
destruction caused by the hurricane itself, there are also 
areas within the MMA and scattered inland areas that 
have sustained severe damage from tornadoes that were 
generated by the storm. Storm surges and heavy rains 
cause catastrophic flooding to low lying areas. Rainfall 
from the hurricane, in combination with earlier storms, 
causes significant flooding in multiple states along the 
coast. We focus on the following three hurricane relief 
tasks:  

1) Delivering foods to a large group people who have 
been isolated in a flooded area (priority level: 3, deadline: 
in 24 hours). 

2) Transferring sands bags to a specific place in order 
to fix a leaking levee (priority level: 4, deadline: in 10 
hours). 

3) Rescuing a few of persons in a dangerous situation 
or they will be overflooded soon (priority level: 5, 
deadline: in 2 hours). 

Each task is associated with priority information and 
the deadline that it must complete before. The priority 
level contributes to the expected utility of a task and the 
deadline determines when the task’s preconditions and 
resource requirements must be satisfied. The most critical 
resource shared among those tasks is a troop of 
helicopters operated by pilots. One helicopter may switch 
from one task to another task dynamically. Such a switch 
is not arbitrary but really depends on many facts in the 
current situation (e.g., the priority of an emerging task, the 
task’s deadline, and the current location of helicopters, 
etc).  

The scenario is designed as Figure 2 shows. One 
helicopter H1 is in the process of carrying out the task 
Deliver_Food (dest, food, deadline), which requires the 
helicopter to arrive at the destination with loaded food 
before the predefined deadline. Another helicopter H2 is 
engaged in a task named Fix_Levee (loc, bags, deadline), 
which H2 has to transfer sand bags to the specific location 
to fix the broken dam. Meanwhile, there is an emerging 
task Rescue_People (dest, safe_place, deadline) which 



requires at least one helicopter as the resource to rescue a 
group people from a very dangerous place before they will 
be flooded at the estimated deadline. More helicopters are 
desirable in case that there are too many people to be 
rescued. Both coordinators A1 and A2, representing tasks 
Deliver_Food and Fix_Levee respectively, receive the 
request from the coordinator A3 of the task 
Rescue_People. Each of them needs to decide whether to 
switch its own helicopter from itself to the emerging task 
in order to maximize the global outcomes. In order to 
avoid redundant resource transferring, the resource 
requester will also make a decision to select the right 
provider in case that there are multiple willing providers. 
In this case, supposing A3 places a maximum willing 
price 500 on its request for one helicopter: (?h, 500, 
Rescue_People), and A1 generates a bid for its own 
helicopter H1 at a price 300: Bid (H1, 300, Deliver_Food) 
and A2 generates a bid for its own helicopter H2 at a price 
400: Bid (H2, 400, Fix_Levee), it turns out the bid from 
A1 will be accepted finally and H1 will be switched from 
the task Deliver_Food to the task Rescue_People. The 
expected global utility will be 900, which is more than the 
previous expected global utility 700 if we don’t consider 
the switching cost here. 

 

Urgent 911 
call

Plan 1:Fix_Levee(t1) Plan 2: Deliver_Food(t2)

Levee (t1)

Emergency plan: 
Rescue_People(t3)

Island (t3)

Shelter (t2)

H1

H2

A1

A2

Plan adaptation

Planner agents

Helicopters

 
Figure 2: A scenario of hurricane relief 

 
 

5. Experimental Results & Analysis 
 

We tested the proposed approach in a simulation of 
hurricane relief scenario. There are three types of tasks 
which are described in the previous section. Multiple 
instances of each task are triggered randomly in the 
simulator. The initial resource allocation is configurable 
before starting the run. We are using the following 
configuration for initial resource allocation in the 
experiment: 

 

Table 1: Initial Resource Allocation 

 
The simulation starts with the initial configuration. 

There are ten total resource instances [r1, …, r10]. As the 
time goes on, emerging tasks are generated randomly and 
raise competing resource requests. The total utility of all 
succeeded tasks are calculated after the process terminates. 
We use the number of total triggered tasks (successful or 
unsuccessful) as the control variable to demonstrate how 
our approach performs as it increases comparing to the 
other approach that uses a simple “request and reply” way 
to handle resource requests.  
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Figure 3: The global utility of different 
solutions 

 
From the diagram above, we can see that the global 

utility is significantly enhanced using our solution, while 
the case that a resource provider always gives out the 
requested resources doesn’t fully utilize the limited 
resources.    
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Figure 4: The number of completed tasks 
 

Task:  Deliver_Food Rescue_People Fix_Levee 

# Instances 1 1 1 

Resource 
instances 

r1, r2, r3 r6, r7 r3 



However, from the figure 4, we can see that the number 
of completed tasks may not improve using the resource 
optimization comparing to the strategy of switching 
resources simply upon requests. It is because some task 
instances may have very high expected utilities. So it is 
worthwhile to switch resources from several other tasks of 
low expected utilities to satisfy such a task’s resource 
requirement. Thus, even though the total complete number 
of tasks may decrease in some cases, the global utility is 
still maximized.  
 

6. Conclusion 
 

We have introduced a new market-based adaptation for 
coordinating distributed tasks to solve their competing 
resource needs and make the maximum utilization of 
scarce resources. Experimental results in a simulated 
hurricane relief scenario show that resources can be 
reallocated dynamically and efficiently through the 
auction mechanism and generate an optimal solution in a 
timely manner.  

Currently, we are performing further experiments 
involving more types of resources in a more complex 
environment, which will show the scalability and 
robustness of our adaptation mechanism. An interesting 
issue to be explored is alternative resource reasoning. 
Alternative resources not only make the solution more 
flexible, but also help the coordinator choose the most 
suitable option to compete the task not only for its own 
sake but also for the global objective. In addition, in order 
to reduce unnecessary communication costs, we are trying 
to enable a coordinator to infer who are most likely to 
possess the needed resources so that it can only send 
requests to those agents instead of broadcasting to all 
others.    
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