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ABSTRACT 
Recent operations in Iraq and Afghanistan have 

confirmed that in order to achieve effective Network-
Centric Operations (NCO), innovative enhancement to 
military decision-making is desired. Required are 
processes and computational models that support the 
decision-makers’ experience while promoting high levels 
of shared situation awareness (SA) – not only in the 
context of the external operating environment, but 
internally aligning the decision makers’ mental model 
with the intelligent software agents working on their 
behalf.  Towards this end, the aim of this research is to 
enhance the decision-maker’s perception, comprehension, 
and projection of the underlying knowledge space while 
improving shared human-agent SA. To accomplish this 
we extended R-CAST, an agent-based Recognition-
Primed Decision (RPD) model developed at the 
Pennsylvania State University (PSU) with the capability 
to interactively visualize the knowledge space during 
execution.  Presented are the early results of a recently 
completed knowledge visualization experiment where 
ROTC cadets from the PSU operated the visually-
enhanced R-CAST on a command and control simulation.  
 

INTRODUCTION 
 

From a military perspective, shared situation 
awareness (SA) is a critical tenet of Network Centric 
Operations (NCO) and has been the subject of much 
review [1, 2, 3].  A central premise of NCO is that while 
operating within the context of robust and networked 
physical, information, cognitive and social domains – the 
Warfigher of the future will be empowered to make better 
decisions.   Recent operations in Iraq and Afghanistan 
have confirmed that in order to achieve effective 
Network-Centric Operations (NCO), innovative 
enhancements to military decision-making are desired.  
Required are processes and computational models that 

support the decision-makers’ experience while promoting 
high levels of shared situation awareness (SA) – not only 
in the context of the external operating environment, but 
internally aligning the decision maker’s mental model 
with the intelligent software agents working on their 
behalf.   

One promising approach to this challenge has been 
Gary Klein’s Recognition-Primed Decision (RPD) model 
[4].   Born out of the Naturalistic Decision Making 
(NDM) paradigm, RPD shares many of the characteristics 
found in NCO – requiring military commanders and their 
staff to operate in dynamic environments that are 
challenged with uncertainty, time stress, and high stakes 
outcomes. RPD is grounded in a requirement for strong 
SA and relies on one’s experience to recognize the current 
situation in order to formulate satisficing courses of 
action.  For complex military operations, like those being 
encountered in Operations Iraqi Freedom and Enduring 
Freedom (OIF/ OEF), challenges arise when the current 
situation is difficult to distinguish or slow to develop.  
The aim of this research is to integrate knowledge 
visualization into a computational RPD process in order 
to enhance the decision-maker’s perception, 
comprehension, and projection of the underlying 
knowledge space while improving shared human-agent 
SA.  

To accomplish this goal, we extended R-CAST, an 
agent-based RPD model developed at the Pennsylvania 
State University (PSU) with the capability to interactively 
visualize the knowledge or experience space during 
execution [5, 6].  In this context, knowledge visualization 
is defined as the mediating process that promotes the 
conveyance of experiential knowledge and higher-level 
SA between the cognitive-enabled RPD software agent 
and the decision maker.  In this research we examine a 
knowledge visualization approach that reduces the high-
dimensionality characteristics associated with an 
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experience (knowledge) space onto a 2-dimensional 
display allowing transparency into the RPD decision 
process.   

The remainder of this paper is organized as follows.  In 
section 2, background information on the RPD-enabled R-
CAST agent system and knowledge visualization is 
presented.  In section 3, our research approach is outlined 
followed by a look at some early results of the experiment 
in section 4.  Concluding remarks and future directions 
are given in section 5. 

BACKGROUND 

RPD-enhanced R-CAST Agent System 

Differing from classical decision making where the 
decision maker attempts to optimize the expected value of 
a predetermined number of alternatives, the RPD model 
relies on intuition and experience along with mental 
simulation to recognize the similarity between the current 
situation and past experiences [4]. A satisficing solution 
based on that past experience is then quickly formulated.  
At a high level of abstraction, the model has two phases: 
recognition and evaluation.  A diagram of the RPD 
process is shown in figure 1. 

 
Figure 1: RPD Model 

 
 

R-CAST is an agent-based, RPD-enhanced framework 
that extends the CAST (Collaborative Agents for 
Simulating Teamwork) agent architecture [5, 6, 7].  The 
R-CAST framework enables agents to collaborate with 
other members of the team (software or human) in sharing 
information relevant to their decision-makings based on 
the RPD paradigm.  Leveraging the concept of shared 
mental models in team cognition, R-CAST proactively 
anticipates information needs and collaborates in seeking 
and monitoring relevant information effectively, allowing 
improved human-agent and agent-agent collaboration [8, 
9]. 

 

 
Figure 2: The R-CAST Architecture 

 
Major components of R-CAST are shown in Figure 2.  

To capture the recognition phase in the RPD model, the 
Decision Making module uses the information in the 
knowledge base, past experiences from the experience 
base, and the current situation recognition to determine if 
a past experience matches the current situation.  The 
evolution of decisions can involve inter-agent, intra-agent 
and human-agent activities, which are coordinated by the 
Teamwork Manager and Taskwork Manager, respectively 
[10].   

 
The Expectancy Monitoring module monitors the current 
situational context for anticipated changes and informs 
the Decision Making module accordingly.  Experiences 
that are adapted to a successful outcome are processed 
into the system as new experiences through the 
Experience Adaptation Module.  Experiences are codified 
as cues, goals, courses of action and expectancies.  In R-
CAST the cues, goals and expectancies are represented as 
predicates [8].  
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Knowledge Visualization  

Knowledge visualization is an emerging field growing 
out of the cognitive and computer sciences with an 
objective to facilitate the creation and transfer of 
knowledge between two or more entities [11]. Differing 
from traditional information visualization, knowledge 
visualization is more than facts and graphs, its goal is an 
enabling technology allowing the correct conveyance and 
application of complex insights, experiences, 
perspectives, and high-level concepts from one entity to 
another [12, 13]. 

On one level, visualization can be thought of as a 
dimension-reduction activity designed to summarize 
complexity and encourage the influence of human visual 
perception into the decision making process [14, 15].  
Visualization takes advantage of the human capacity for 
spatial reasoning and the development of mental or 
concept maps of complex relationships [16, 17].  It is 
through this visual construct that the human is able to 
project relationships and association among the visualized 
objects and ultimately align the transfer and creation of 
knowledge.  The goal of introducing knowledge 
visualization into the RPD process is to enhance the 
decision maker’s understanding of the underlying 
decision space – supporting the collaboration and 
improving the shared SA between the human operator and 
its cognitive-enabled software agents.   

The knowledge visualization approach adopted for this 
research is based on a hybrid multidimensional scaling 
(MDS) technique. MDS is a statistical method that allows 
a matrix of similarities or dissimilarities measures to be 
dimensionally reduced to a human understandable 2– or 
3–dimensional space [18].   In this experiment it is the 
codified experiences of the decision space that make up 
the similarity matrix in question.  Similarity calculations 
between independent experiences are based on the 
aggregated features that define each experience.   

Shown in figure 3 is an example of an R-CAST 
knowledge Visualization of the Agent Decision Space 
(VADS).  The VADS is a visual display used to map a 
collection of past experiences or Common Historical 
Cases (CHCs).  The positioning of the CHCs circles are 
based on relative similarities and mapped via an MDS-
type procedure.  As a new situation unfolds, a target icon 
is positioned on the VADS relative to the similarity of 
closest matching CHC.   

 
Figure 3: R-CAST Visualization Agent Decision Space (VADS) 

 
For this experiment, our VADS implementation was used 
to represent crowd experiences; specifically:  

• IED-related crowd experiences,  
• Key-insurgent related crowd experiences,  
• Planned crowd related experiences and  
• Other crowd-on-crowd related experiences.   

 
The size, color and position of the crowd CHC icons were 
determined using the following characteristics:  

• crowd triggering event,  
• crowd size,  
• crowd composition,  
• crowd proximity to military significant objects, 
• crowd proximity to civilian significant objects,  
• hostility level,  
• level of armament, and  
• anticipated threat level (low, medium, high, very 

high).   
 

Generally, the darker and larger the CHC icon the 
higher the level of importance.  The two areas of greatest 
concern are the two large centered CHC icons 
representing experiences associated with Insurgency and 
Sectarian Violence. As the characteristics of an active 
crowd changes, it is repositioned on the ADS display. In 
addition to temporally repositioning active crowd targets 
on the ADS, the conveyance of knowledge about an 
active crowd or a related CHC is augmented with the use 
of iconic symbols located on the right of the display.  
Mousing over a CHC or clicking an active target refreshes 
appropriate icon display. An example of a crowd 
information icon is shown in figure 4.  
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Figure 4: Experience Icon 

 
Allowing holistic view of the ADS provides a 
transparent view of the agent decision process 
improving the decision makers shared SA allowing 
for adjustment of contextual constraints and ability to 
prioritizing missing information.   
 

RESEACH APPROACH 

Simulation Environment 

In order to exercise our knowledge visualization 
concepts we utilized a simulation environment developed 
collaboratively between the PSU and the U.S. Army 
Research Laboratory (ARL) – namely the “Three-Block 
Challenge”.  Three-Block Challenge is a human-in-the-
loop command and control (C2) simulation involving an 
urban setting where the context of the current mission 
frequently switches between humanitarian, peacekeeping 
and combat operations. The context switching imposes 
challenging information and decision making demands 
found in an urban C2 operation. 
 

Our synthetic environment supports a C2 team 
consisting of an S2 (intelligence officer) and an S3 
(operations officer).  Each officer is assisted by an RPD-
enabled software agent.   The S2 officer is responsible for 
processing incoming Spot reports, collecting relevant 
information for other sources and alerting the S3 to 
potential threats.  The S3 is responsible for processing 
alerts from the S2 and making decisions on which targets 
to address and determine the resource allocation (friendly 
units).  The simulation generates three kinds of threat 
objects: improvised explosive devices (IEDs), crowds and 
insurgents.   Each of the threat objects is synchronized by 
the simulation engine as SPOT reports.  Other objects of 
interest in the environment include main supply routes 
(MSRs), key buildings (religious, schools and hospitals) 

and military significant objects (MSOs) including check 
points, garrisons, police stations and other government 
buildings.  
 

For this study the roles of the officers have been 
simplified.  The actions of the S2 have been completely 
automated by a suite of S2 RPD agents allowing us focus 
entirely on the S3 decision making process.  Decisions by 
the S3 officer involving target selection and resource 
allocation require trade-offs among multiple factors: 
target type, available units, unit distance, threat level and 
remaining life of target.   Figure 5 shows a concept of 
operations for the planned experiment.  
 

 
Figure 5 : Knowledge Visualizaiton Concept of Operation  

 
Experiment Objective 

The objective of this year’s research effort was to assess 
the effects of integrating knowledge visualization into a 
cognitively-enabled agent-based decision support system 
on the human subject’s situation awareness, task 
performance, mental workload and trust.  As in previous 
studies, our study utilized the R-CAST agent architecture 
and the Three-block Challenge simulation environment.   

Design 

The study employed a 2 (visualization mode) x 2 (work 
load) x 2 (task complexity) mixed design.  The between-
group factor was the mode of visualization (experimental 
group utilizing knowledge visualization vs. control group 
utilizing tradition table visualization).   The two within-
group factors were the scenarios’ work load (5 crowds vs 
10 crowds) and level of task complexity (ratio of fast-
burning vs slow-burning crowd movement). The 
dependent variables included task performance, situation 
awareness, trust in automation, and subjective workload. 
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Experimental Interface 

For this year’s experiment the dual-display R-CAST 
user interface was modified to incorporate the knowledge 
visualization concept previously described.    
 

 
Figure 6: R--CAST Military Geo-Spatial Map 

 

Both the experimental group and control group 
continued to have access to the Military Geo-Spatial map 
(Geo-Map) shown in figure 6.  The Geo-Map provides the 
common operating picture (COP) to the simulation 
environment: showing all active icons (friendly and 
hostile), unit status, tasking assignments and game score. 

 

 
Figure 7: R-CAST Visualization Agent Decision Space. 
 

To introduce the concept of knowledge visualization, 
we modified the focus of this year’s experiment to 
emphasize the importance of crowd control.  For the 

experimental group the VADS display was used to 
convey the underlying agent decision process (figure 7).  
For the control group a tabular form of the same 
information was given in the Agent Decision Table 
(ADT) shown in figure 8.  

 

 
Figure 8: RCAST Visualization Agent Decision Table 

Participants 

Thirty two ROTC students from the PSU (29 male, 3 
female; mean age 20.0) participated in this study for a 
nominal financial payment.  The experimental group had 
15 males and 1 female with an average video game 
experience of 4.0 hours per week while the control group 
contained 14 males and 2 females with an average video 
game experience of 4.3 hours per week. 

Scenario Development 

Four 10-minute scenarios were developed for this 
experiment, manipulating the work load and level of 
task complexity.  The work load was defined by the 
number of active crowds on the display.  We defined 
two levels: Low (5 active crowds at one time) and 
High (10 active crowds at one time).  For task 
complexity we altered the ratio of slow-burning 
crowds to fast-burning crowds.  Slow-burning crowds 
were defined as crowds taking more than 60 seconds 
to reach threat-level 4 (the highest level) while fast-
burning crowds had the potential to reach threat-level 
4 under 60 seconds.  The ratio of slow-burning to 
fast-burning was adjusted from 1:1 to 1:2.  Scenarios 
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also varied in the location and shapes of main supply 
routes, key buildings, and military significant objects. 

 

EARLY RESULTS 

During the experiment numerous measurements were 
made.  Assessment of task performance for each scenario 
was measured by scoring number of targets successfully 
cleared (more points being awarded for higher threat 
crowds).  Assessment of SA was capture during and after 
each scenario using the Situation Awareness Global 
Assessment Technique (SAGAT) [19].  Participant’s 
perceived workload was assessed using NASA-TLX [20]. 
A trust in automation scale developed by [20] was 
administered following completion of the final scenario.  

 
Two analyses of task performance and real-time SA 

have been performed.   The results indicate positive step 
towards aligning the decision maker understands with the 
software agents working on their behalf.  Detailed 
analysis on higher-level SA including comprehension and 
projection are underway. 

Task Performance 

One of the measures calculated for task performance 
was the combined Score*real-time SAGAT. The un-
normalized result for this t-test measure showed the 
experimental group score on average 20 percent improved 
over the control group with a statistical p value = .0719. 

 
Figure 9: Task Performance - Score * Real-time SA 

 

 

 

Real-time SA 

To measure real-time SA participants were ask a SAGAT 
question after each assignment of resources to a threat 
target.  Here the results of the t-test show SA improved 
with the experimental group by about 8 percent on 
average over the control group with a statistical p value = 
.1424. 
 

 
Figure 10: Real-time SA Score 

 

CONCLUSIONS 

As the Army grows towards the realization of true 
NCO the requirement for effective cognitive-enabled 
decision aids grows with it. Enabling technologies that 
allow the conveyance of knowledge (complex insights, 
experiences, and high-level concepts) including shared 
SA and its correct application will be critical.  In this 
research we examined a knowledge visualization 
approach designed to enhance the decision maker’s 
perception, comprehension, and projection of the 
underlying knowledge space while improving shared 
human-agent SA.  The preliminary results reveal progress 
has been made, with much work remaining.  
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