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Abstract
Complex networks exist in a wide array of diverse do-
mains, ranging from biology, sociology, and computer
science. These real-world networks, while disparate in
nature, often comprise of a set of loose clusters(a.k.a
communities), whose members are better connected to
each other than to the rest of the network. Discov-
ering such inherent community structures can lead to
deeper understanding about the networks and there-
fore has raised increasing interests among researchers
from various disciplines. This paper describes GWN-
LDA(Generic weighted network-Latent Dirichlet Allo-
cation) model, a hierarchical Bayesian model derived
from the widely-received LDA model, for discovering
probabilistic community profiles in social networks. In
this model, communities are modeled as latent variables
and defined as distributions over the social actor space.
In addition, each social actor belongs to every com-
munity with different probability. This paper also pro-
poses two different network encoding approaches and
explores the impact of these two approaches to the com-
munity discovery performance. This model is evaluated
on two research collaborative networks:CiteSeer and
NanoSCI. The experimental results demonstrate that
this approach is promising for discovering community
structures in large-scale networks.

Introduction
Complex networks exist in a wide range of real world sys-
tems, such as communication networks, ecological webs,
protein interaction networks, and social networks. Despite
their disparate nature, these networks often exhibit common
topological properties, including the small-world property,
and power-law degree distribution. In addition, some mem-
bers in the networks form loose clusters, making them better
connected to each other than to the rest of the network. Dis-
covering and identifying these clusters is referred as commu-
nity discovery problem which has raised significant interest
among researchers from a variety of disciplines.

While the concept of community is self-explanatory, there
is no quantitative, rigorous definition that is commonly ac-
cepted. This is partly due to the fact that members in the
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network can potentially belong to more than one commu-
nities and the boundaries between communities are often
blurry and difficult to draw. The current dominant commu-
nity discovery algorithms tend to define various distance-
based measures and cluster networks accordingly. However,
such strategies fail to capture the overlap among communi-
ties and multiple membership phenomenon. Therefore, the
outcome of such algorithms is often artificial and difficult to
explain. In order to address this problem, we design a hi-
erarchical Bayesian network based approach, namely GWN-
LDA(Generic-Weighted Network-LDA), to discover proba-
bilistic communities from complex networks. This model
is inspired by the success of the application of LDA(Latent
Dirichlet Allocation) models in information retrieval and
image analysis domains. In the GWN-LDA model, com-
munities are modeled as latent variables and are considered
as distributions on the entire social actor space. Therefore,
each social actor contributes a part, big or small, to every
community in the society. In addition, this paper proposes
and compares two different approaches to encode the net-
works in order to be processed by the GWN-LDA model.
Finally, this latent probabilistic model and the two pertain-
ing network encoding approaches are evaluated on two co-
authorship networks from two distinct academic communi-
ties, i.e NanoSCI from the nanotechnology domain and Cite-
Seer from the computer science domain. Note that while
this approach is evaluated in the social network domain with
co-authorship networks, it can be easily extended to other
complex network-based applications.

In conclusion, the contributions of this paper include: (1)
an LDA-based probabilistic community discovery model in
large-scale generic-weighted networks which only requires
the topological structure of networks; (2) the exploration of
the impact of different network encoding strategies on the
community discovery.

The rest of this paper is organized as follows. We first
introduces related studies and then present the technical de-
tails of GWN-LDA model and the corresponding Gibbs sam-
pler. In the experiment and result section, we describe the
two co-authorship networks and two encoding approaches,
followed by the experimental settings and results analysis.
Finally we conclude the paper with a brief summary of this
model.



Background and Related Works
Community discovery problems have been studied in a
variety of networks, including World Wide Web(Flake,
Lawrence, & Giles 2000), distributed information re-
trieval(Zhang et al. 2004), social networks(Clauset, New-
man, & Moore 2004; Girvan & Newman 2002; Newman
2004b; Palla et al. 2005; Scott 2000; Zhou et al. 2006b;
Newman 2004a), and biological networks(Girvan & New-
man 2002; Palla et al. 2005; Wilkinson & Huberman
2004). Most of these approaches are characterized by the
use of distance-based measures, including Centrality in-
dices(a.k.a betweeness)(Freeman 1977; Girvan & Newman
2002; Wilkinson & Huberman 2004; Ruan & Zhang 2006)
or Minimum cut approaches(Flake, Lawrence, & Giles
2000). The common ground for these studies is the defini-
tion of community distance measures and (iterative) cluster-
ing process for minimizing such measures. This paper de-
scribes a probabilistic community discovery model, GWN-
LDA, based on mixture-model based approach. LDA model
was first introduced by Blei for modeling the generative pro-
cess of a document corpus(Blei, Ng, & Jordan 2003). Its
ability of modeling topics using latent variables has attracted
significant interest and it has been applied to many domains
including document modeling (Blei, Ng, & Jordan 2003;
?), text classification (Blei, Ng, & Jordan 2003), image pro-
cessing(Sudderth et al. 2005), contextual community dis-
covery(Zhou et al. 2006b; 2006a).

GWN-LDA, similar to a previously developed model
(SSN-LDA), encodes the structural information of networks
into profiles and discovers community structures purely
based on the social connections among the social actors.
These two models do not depend on semantic information
as does in (Zhou et al. 2006b; 2006a). However, the major
drawback of SSN-LDA approach is its inability of modeling
the weight of social interactions since the community com-
ponent distribution is specified as multinomial distribution
with a Dirilet prior and unable to handle the situation when
weight is real number. GWN-LDA model uses a Gaussian
distribution with inverse-Wishart prior to model the arbitrary
weights that are associated with the social interaction occur-
rences.

LDA Model for Generic-Weighted Networks
This section describes the GWN-LDA model. Before diving
into the details, we introduce the technical details of GWN-
LDA model and the corresponding Gibbs sampler.

GWN-LDA Model Description
A typical social network is composed of a pair of sets, in-
cluding the social actor set V = {v0, v1, ...vM} and social
interaction set E = {e0, e1, ..., eN}, together with a Social
Interaction Weight function: SIW : (V × V ) → R. The
number of the social actors is denoted as M . The elements
of social actor set V are the vertices of the network and the
elements of social interaction set E are the edges of G, rep-
resenting the occurrence of social interactions between the
corresponding social actors. Each social interaction ei in

set E is considered as a binary relation between two so-
cial actors, i.e. ei(vi1 , vi2) and SIW function describes
the strength of such interaction. Different from SSN-LDA,
SIW function in GWN-LDA function can take on arbitrary
real number. In this paper, vertex and social actor, edge and
social interaction are used interchangeably.

A node vi’s neighboring agents are encoded by the vari-
able ~ωi and ωij ∈ V means node vi’s jth neighbor. Each
actor is characterized by its social interaction profile (SIP),
which is defined as a set of neighbor(ωij) and the corre-
sponding weight(SIW (vi, ωij)) pair. Formally,

SIP (vi) = {(ωi1, SIW (vi, ωi1)), · · · , (ωiNi
, SIW (vi, ωiNi

))}

where Ni is the size of vi’s social interaction profile. Note
that we consider the social interaction elements in this pro-
file are exchangeable and therefore their order will not be
concerned. It is this exchangeability that permits the appli-
cation of LDA model(Blei, Ng, & Jordan 2003).

Subsequently, we specify that a social network contains
K communities ι(ι1, ι2, ..., ιk) and each community in ι
is defined as a distribution on the social actor space. In
GWN-LDA, community assignments are modeled as a latent
variable(ι) in the graphical model. The community propor-
tion variable (θ) is regulated by a Dirichlet distribution with
a known parameter α. Meanwhile, each social actor be-
longs to every community with different probabilities and
therefore its social interaction profiles can be represented
as random mixtures over latent communities variables. The
graphical model is illustrated in Figure 1, where each social
interaction profile is considered as a multinomial distribu-
tion of community variables and each community is mod-
eled as a multivariate Gaussian distribution of social interac-
tion weight variables. The parameter sets for the two distri-
butions are specified as Θ = { ~θm}M

m=1 and Ω = { ~µk, ~Σk}
respectively.

Given ~θi and Ω, the probability of ωi,j = r is:

p(ωi,j = r|~θi,Ω) =

K
∑

j=1

p(ωi.j = r| ~µk , ~Σk)p(ιi,j = k|~θi)

(1)

p( ~ωm| ~µm, ~Σm) ∝ |Σm|− exp(−
1

2
tr(Σ−1

m S0)) (2)

where S0 =
∑n

i=1(ωmi − µm)T (ωmi − µm)
In order to obtain a close-form distribution, the prior

distribution for the social interaction profiles is set as a
Dirichlet prior with hyperparameter α and the prior for
community component distribution is set as Multivariate
Gaussian/inverse-Wishart distribution. For the sake of sim-
plicity, we denote the hyperparameter for the prior distribu-
tion is Ψ = { ~µ0, ~κ0} and Υ = {~υ, λ} respectively. Accord-
ing to this prior distribution definition, the joint prior density
is (Gelman et al. 2004):

p(Ω) ∝ |Σ|−(
(υ0+d)

2 +1)∗

exp

(

−1

2
tr(Λ0Σ

−1) −
κ0

2
(µ − µ0)

T Σ−1(µ − µ0)

)



The parameters υ0 and Λ0 describe the degree of freedom
and the scale matrix for the inverse-Wishart distribution on
Σ. The remaining parameters are the prior mean, µ0, and
the number of prior measurements, κ0 on the Σ scale.

Specifically,
Σ ∼ W−1(υ0, Λ

−1
0 ) (3)

µ|Σ ∼ N(µ0,
Σ

κ0
), (4)

where W−1 represents inverse-Wishart distribution,
which is a multivariate generalization of the scaled inverse-
χ2 distribution. The pdf function and more information
about the Wishart distribution can be referred to (Gelman
et al. 2004).

From the topology of the Bayesian network, we can fur-
ther specify that the complete-data likelihood of a social in-
teraction profile (the joint distribution of all known and hid-
den variables given the hyperparameters:

p( ~ωi, ~ιi, ~θi,Ω|~α, ~υ, ~Λ, ~κ, ~µ0) =
Ni
∏

j=1

p(ωi,j | ~µk, Σk)p(ιi,j = k|~θi)p(~θi|~α)p(~µ, ~Σ|~υ, ~Λ, ~κ, ~µ0)

Finally the likelihood of the complete network W =
{ ~ωm}M

m=1 is determined by the product of the likelihoods
of the independent nodes:

p(W |~α, Ψ, Υ) =

M
∏

m=1

p( ~ωm|~α, Ψ, Υ)

The generative process can be explained as that the
Bayesian network of GWN-LDA model generates a stream
of observable edges ωm,n, partitioned into node profile ~ωm.
For each of these node profiles, a profile proportion θi is
drawn, and from this, profile-specific edges are emitted.
That is, for each connection, a community indicator ιm,n is
sampled according to the node-specific mixture proportion,
and then the corresponding community-specific node distri-
bution ωm used to draw a connection and its corresponding
weight. The communities ιi are sampled once for the entire
network.

No

M

α ωιθ

Σ µυ

Λ

µ0 κ

Figure 1: Graphical Model for GWN-LDA

Gibbs Samplers for GWN-LDA
The desired distribution for solving the GWN-LDA model is
the posterior probability given evidence p(ι|ω).

p(ι|ω) =
p(ω, ι)

∑

ι p((ω), ι)
(5)

However, the computation complexity of the the denomi-
nator part is prohibitively high. Analogous to the deriva-
tion in SSN-LDA model, in order to derive the posterior dis-
tribution over community assignment in GWN-LDA model,
p(ιj | ~ι¬j , ~ω), we start from the joint distribution:

p(~ω,~ι|~α,Υ,Ψ) = p(~ω|~ι,Υ,Ψ)p(~ι|~α) (6)

And

p(~ω|~ι,Υ,Ψ) =

∫

p(~ω|~ι,Ω)p(Ω|Υ,Ψ)dΩ (7)

p(~ω|~ι,Ω) is determined by Formula 2 and p(Ω|Υ,Ψ)
is determined by Formula 1. Integrating over the parame-
ters of the normal-inverse-Wishart posterior distribution in
equation 7, the predictive likelihood of a new observation
is a multivariate Student-t with (υ − d + 1) degree of free-
dom. Such a distribution can be approximated by a moment-
matched Gaussian(Sudderth et al. 2005) distribution:

p(ωi,j |ιij = k, ~ι¬i.j , ~ω,Ψ,Υ) ≈ N(xi,j ; µk, Σk) (8)

where

µk =
1

n
(.)
k

M
∑

i=1

∑

l|zi,l=k

ωi,l (9)

δj =
nk + 1

nk(nk + υp − 3)
(10)

Σk = δk



∆p +
M
∑

i=1

∑

l|ιm,l=k

(ωil − µk)(ωil − µk)T





(11)
Finally,

p(ιij = k|ωi,j , ~ι¬i.j , ~ω¬i,j , ~α,Ψ,Υ) ∝

p(ωi,j |ιij = k, ~ι¬i.j , ~ω,Ψ,Υ) ∗ p(ιi,j = k|~α)(12)

where

p(ιi,j = k|~α) =

∫

p(~ι|Θ)p(Θ|~(α))dΘ (13)

=

M
∏

m=1

∆( ~nm + ~α)

∆(~α)
(14)

The Gibbs sampling process is analogous to the SSN-LDA
model and the detailed algorithm is elaborated in (Zhang et
al. 2007).



Table 1: Statistics for datasets CiteSeer and NanoSCI,PN
denotes the number of papers; EN denotes the number of
edges; AAP denotes the average author number per paper,
and SLC denotes the size of the largest component

Dataset Size PN EN AAP SLC
CiteSeer 398831 716793 1181133 1.65 249866
NanoSCI 225313 195997 877609 4.48 203762

Experiments and Evaluation
Two Co-Authorship Networks
In co-authorship networks, the vertices represent researchers
and the edges in the network represent the collaboration rela-
tion between researchers. In this section we evaluate GWN-
LDA model on two co-authorship networks collected from
computer science(CiteSeer) and nanotechnology(NanoSCI).
Note that no name disambiguation has been done on either
dataset.
CiteSeer Dataset CiteSeer is a free public resource cre-
ated by Kurt Bollacker, C. Lee Giles, and Steve Lawrence
in 1997-98 at NEC Research Institute (now NEC Labs),
Princeton, NJ. It contains rich information on the citation,
co-authorship, semantic information for computer science
literature. In this paper we only consider the co-authorship
information which constitutes a large-scale social network
regarding academic collaboration with diversities spanning
in time, research fields, and countries.
NanoSCI NanoSCI is a collection of nanotechnology
related articles published and indexed by SCI(Science
Citation Index) in 2000-2006 period. The records
are acquired by inquiring Thomson Scientific website
(http://scientific.thomson.com/products/sci/) directly. The
query used in this paper is generated using an iterative rele-
vance feedback technique (Kostoff et al. 2006). The essen-
tial idea of this approach is to augment the keyword set until
the returned results converges.

Table. 1 lists the statistics for the two data collections.
Both CiteSeer and NanoSCI contain unconnected subnet-
works. In particular, CiteSeer contains 31998 subgraphs
and NanoSCI contains 5241 unconnected subnetworks. The
size of the largest connected sub-network of CiteSeer is
249866 while the size of the largest connected subnetwork
in NanoSCI is 203762. In this paper, we are only inter-
ested in discovering community structures in the two largest
sub-networks. Therefore, unless specially specify, we al-
ways mean the two sub-networks when referring CiteSeer
and NanoSCI.

Encoding Social Interaction Profiles
The social interaction profiles of the social actors collec-
tively determines the structure and dynamics of a social net-
work. In this paper, we explore two different types of so-
cial interaction profile representations for social networks,
namely 01-SIP, and Real-SIP. It is worth to mention that
such exploration is by no means comprehensive. Neverthe-
less it provides valuable insights for designing more sophis-

ticated social interaction profile encoding schemes.
01-SIP In the 01-SIP approach, an edge is drawn between
a pair of scientists if they coauthored one or more arti-
cles. Collaborating multiple times does not make a dif-
ference in this model. Therefore, the social interaction
profiles of the social actors constitute the adjacent ma-
trix of the social network. Many previous studies on so-
cial networks use this type of representation(Freeman 1977;
Wilkinson & Huberman 2004). More formally, the SIW
function is defined as:

SIW01(vi1 , vi2) =

{

1 if e(vi1 , vi2) ∈ E;
0 else. (15)

Real-SIP However, one of the disadvantage of 01-SIP is
that the social interaction profiles give no consideration to
the nodes other than their direct neighbors and fall short
of considering the frequency of collaboration. In order to
mitigate this problem, we propose a Real-SIP model which
takes a node’s neighbors’ neighbors into consideration. This
way, the social interaction profiles reflect the proximity of
the nodes in the network more accurately. Furthermore,
the final matrix defined by the social interaction profiles are
less sparse which can improve the performance of the LDA
model(Si & Jin 2005). In this model, we distinguish a node’s
direct neighbors from its neighbors’ neighbors by giving dif-
ferent weights to them. The SIW function for a node is de-
fined as follows:

SIWR(vi1 , vi2) =



















pin,i2 ∗ ci1,in
if (e(vi1 , vin

) ∈ E)
&&(e(vin

, vi2) ∈ E)
&&(e(vi1 , vi2) 6∈ E);

ci1,i2 if e(vi1 , vi2) ∈ E;
0 else.

(16)
where ci1,i2 is the frequency of the collaboration between
researchers vi1 and vi2 ; and pin,i2 , a normalized discount
coefficient, is defined as

pin,i2 =
cin,i2

∑

j cin, ij

Therefore, Real-SIP encoding approach takes into ac-
count not only the strength of the collaboration, but also the
second-order neighbors.

Experimental Settings and Evaluation
In evaluating the model and different SIP construction ap-
proaches, we first build up SIP in the two different ways for
the researchers in the two networks. And then, 10% of the
original datasets is held out as test set and we run the Gibbs
sampling process on the training set for i iteration. In par-
ticular, in generating the exemplary communities, we set the
number of the communities as 50, the iteration times i as
1000. In perplexity computation, i is set as 300 in order to
shorten the computation time.

We evaluate this model in both descriptive and quanti-
tative ways: first, we demonstrate the exemplary commu-
nities discovered by the algorithms and briefly discuss the



Table 2: An illustration of 4 communities from a 50-
community solution for the CiteSeer dataset after 1000 it-
erations based on Real − SIP approach. Each commu-
nity is shown with the 10 researchers and the corresponding
µm,n(magnitude is 10−2) that have the highest probability
conditioned on that topic

Community 8 Community 19
H. V Jagadish(2.2) Sebastian Thrun(2.3)

Rakesh Agrawal(2.0) Tom Mitchell(1.7)
Christos Faloutsos(1.9) Manuela Veloso(1.7)

David Lomet(1.8) Reid Simmons(1.6)
Divesh Srivastava(1.7) Takeo Kanade(1.6)

Krithi Ramamritham(1.7) Dieter Fox(1.5)
Sharad Mehrotra(1.6) Milind Tambe(1.5)
Kenneth A Ross(1.6) Frank Dellaert(1.4)
Serge Abiteboul(1.5) Peter Stone(1.3)

Jiawei Han(1.5) Andrew Moore(1.2)
Community 22 Community 36

David Culler(2.1) Alex Waibel(2.6)
Eric Brewer(2.0) Nelson Morgan(1.9)
Ion Stoica(1.9) Lynette Hirschman(1.8)

Garth Gibson(1.8) John Lafferty(1.8)
Y.H Katz(1.8) Stanley Osher(1.6)

Steven Gribble(1.8) M. J. Irwin(1.6)
David Patternson(1.7) Lori Levin(1.5)

Scott Shenker(1.7) Robert Frederking(1.4)
Srinivasan Seshan(1.7) Jie Yang(1.4)

Amin Vahdat(1.7) R. G. Mamahon(1.2)

results. Therefore, we compare the perplexity values for a
set of community numbers for three different SIP encoding
approaches. Furthermore, we investigate the quality of the
discovered communities from a clustering perspective.

Examples of Communities
Table 2 shows 4 exemplary communities from a 50-
community solution for the CiteSeer dataset with social in-
teraction profiles being created using Real-SIP representa-
tion. Each community is shown with the top 10 researchers
that have the highest probability conditioned on the com-
munity. Note that CiteSeer dataset was crawled from Web
and some authors were not recovered correctly, we keep the
results in an “as is” fashion.

These exemplary communities give us some flavor
on the communities that can be discovered by this ap-
proach. Specifically, we observe that some communities are
“institution-based”, some others are “topic-based’. For in-
stance, community 22 is clearly a Berkeley community al-
though their research interest span a variety of areas. and
most researchers in community 36 are from CMU. The sec-
ond type of community is“topic-based”, as illustrated by
Community 8 and 19, where most researchers in these two
communities fall into database and AI domains respectively;
Note that these two types of communities are not exclusive,
meaning that many communities are actually “hybrid”, with
some members being from the same institutions and others

Table 3: Perplexity Results on CiteSeer after 300 iterations
with the two SIP approaches

SIP K=20 K=30 K=50
0-1 19473.3 16812.9 9752.9
Real 8763.1 7989.7 6289.3

work on the same area. This observation reveals the fact that
researchers from same institution or with similar research
interest tend to collaborate together more and build closer
social ties.

Perplexity Analysis
Perplexity is is a common criterion for measuring the per-
formance of statistical models in information theory. It in-
dicates the uncertainty in predicting the occurrence of a par-
ticular social interaction given the parameter settings, and
hence it reflects the ability of a model to generalize unseen
data.

Perplexity PP is defined as

PP (W̃ ) =
M
∏

m=1

p( ~ωm)−
1

Nm (17)

= exp
−

ΣM
m=1

logp( ~ωm)

ΣM
m=1

Nm (18)
where ~ωi is the social interaction profiles in the test set

and

p( ~ωi) =

Ni
∏

j=1

ΣK
k=1p(ωi,j |ιn = k)p(ιn = k|d = m) (19)

Note that the p(ωi,j |ιn = k) can be determined by the
training set, but hyperparameter p(ιn = k|d = m) for the
unseen documents in the test sets has to be estimated. The
estimation can be achieved by conducting another Gibbs
sampling process.

Table 3 lists the perplexity results for a selected set
of topic numbers for the two different representation ap-
proaches. It shows that the perplexity value is high initially
and decreases when the number of communities increases.
In addition, the results show that the Real-SIP approach has
lower perplexity value than the 0-1, which implies that Real-
SIP leads to more accurate prediction.

Clustering Analysis
In this section, we evaluate the quality of the communi-
ties discovered by GWN-LDA by comparing their compact-
ness. Compactness of a community is measured through
the average shortest distance among the top-ranked Nr re-
searchers in this community. Short average distance indi-
cates a compact community. In particular, Nr is set as 1000
in this paper. Both CiteSeer and NanoSCI have more than
200, 000 nodes in the network. In order to reduce the com-
putational complexity and memory usage in calculating the
shortest distances among the researchers, we pre-process
the two networks by conducting a graph reduction algo-
rithm to reduce the number of the nodes in the network. In



Table 4: Compactness Results for CiteSeer and NanoSCI
with the two SIP approaches

SIP CiteSeer(K=50) NanoSCI(K=50)
mean deviation mean deviation

0-1 5.82 1.52 4.30 1.04
Real 4.74 1.69 3.57 0.98

this graph-reduction algorithm, we iteratively eliminate the
nodes whose degree is 1 (i.e, only one co-author). Subse-
quently, we run Johnson’s algorithm for calculating all-pair
shortest paths for the processed networks. Since we focus
on the top ranked researchers, this preprocessing has mini-
mal impact on concerned researchers.

Table 4 demonstrates the compactness and well-
separateness measures for 01-SIP and Real-SIP approaches
for datasets CiteSeer and NanoSCI respectively. In this ex-
periment, the number of communities K is set as 50. The t-
test results show that the Real-SIP approach is significantly
better the other two approaches for both datasets.

Conclusions
Community discovery has drawn significant research inter-
est among researchers for its increasing applications in a
wide range of areas, including computer science, biology,
social science and so on. This paper describes an LDA(latent
Dirichlet Allocation)-based hierarchical Bayesian algo-
rithm, namely GWN-LDA, to discover community structure
from large-scale complex networks. In this model, commu-
nities are modeled as latent variables in the pertaining graph-
ical model and defined as distributions over social actor
space. This model is evaluated on two research collabora-
tive networks:CiteSeer and NanoSCI. The experimental re-
sults demonstrate that this approach is promising for discov-
ering community structures in large-scale networks. While
this approach is developed and evaluated in social network
domain, the model is generic and can be naturally extended
to other complex network research areas.
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