
R-CAST: Integrating Team Intelligence for Human-Centered Teamwork

Xiaocong Fan and John Yen
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802
{xfan, juy1}@psu.edu

Abstract

Developing human-centered agent architectures re-
quires the integral consideration of architectural flexi-
bility, teamwork adaptability, and context reasoning ca-
pability. With the integration of various forms of team
intelligence including shared teamwork process and
progress, dynamic context management and informa-
tion dependency reasoning, and recognition-primed col-
laborative decision mechanism, R-CAST offers a flex-
ible solution to developing cognitive aids for the sup-
port of human-centered teamwork in information and
knowledge intensive domains. In this paper, we present
the key features of R-CAST. As evidence of its appli-
cations in complex real-world problems, we give two
experimental evaluations of R-CAST as teammates and
decision aids of human Command and Control teams.

Introduction
Contemporary research on teamwork spans a variety of dis-
ciplines, including psychology, cognitive science, artificial
intelligence, organization science, concurrent engineering,
and business management. Researchers in the field of multi-
agent systems have manifested increasing interests in using
intelligent agents to model, simulate, and support human
teamwork behaviors.

However, developing multi-agent systems for human-
centered teamwork is extremely challenging. It mandates
the integral consideration of architectural flexibility, team-
work adaptability (to both human and software teammates),
and the self-management of collaboration context, which,
we believe, are three principles that govern the development
of human-centered agent architectures.

First, agent architectures for human-centered teamwork
have to conquer domain-specificity by offering flexibility
to accommodate teamwork in various domains. The ex-
isting architectures have successfully incorporated different
forms of architectural flexibility: general model of team syn-
chronization and role-monitoring in STEAM (Tambe 1997),
Proxy mechanism in Teamcore (Schurr et al. 2006), separa-
tion of internal and external representations of shared plans
in CAST (Yen et al. 2001), to mention only a few. Archi-
tectural flexibility is especially important when it is required

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to form human-agent teams under timing and resource con-
straints within complex team organizations.

Second, drawn from cognitive studies (Cannon-Bowers,
Salas, & Converse 1990), the concept of shared mental mod-
els (SMM) has not only been put forward to explain co-
ordinated team behaviors, but also deemed to be one of
the key components of any team-oriented agent architec-
ture. Examples are joint intentions (Levesque, Cohen, &
Nunes 1990) implemented in STEAM, SharedPlans (Grosz
& Kraus 1996) adopted in COLLEGAN (Rich & Sidner
1997), joint responsibilities implemented in GRATE* (Jen-
nings 1995), and Petri nets-based teamwork process real-
ized in CAST. The notion of computational SMM is critical
to teamwork adaptability both in coordinating planned team
activities and in responding to teamwork failures. However,
the development of human-centered collaborative systems,
which involve both human-agent and agent-agent collabora-
tions, requires stronger supports for teamwork adaptability.
Thus, it is desired to empower an agent architecture with a
functional SMM that has a broader scope and a richer struc-
ture.

Third, the use of context is of growing importance in de-
veloping computational systems that are more responsive to
human needs. With a general representation and reason-
ing capability of teamwork context, an agent can proactively
predict others’ needs and seek/offer help relevant to the con-
text. However, there are only weak (e.g., teamwork progress
in CAST) or no explicit supports for context in the imple-
mented agent architectures. Some of the reasons might be
its vague scope (what to cover) and its tight connections
with other functional components. We take the position that
teamwork context should be at a level higher than SMM; it
governs an agent’s attention to the very portion of SMM that
is relevant to the current activities.

Putting the three principles together would produce suc-
cessful agent architectures for human-centered teamwork.
This paper introduces an attempt toward this vision: R-
CAST. R-CAST is a team-oriented cognitive agent archi-
tecture built on top of the concept of shared mental models
(Cannon-Bowers, Salas, & Converse 1990) in team cogni-
tion, the theory of proactive information delivery (Fan, Yen,
& Volz 2005), and Klein’s Recognition-Primed naturalistic
decision model (Klein 1989). Due to the complexity im-
posed by the three principles, we have chosen to build R-

CAST as cognitive aids for human decision making teams
in information and knowledge intensive domains.

R-CAST Architecture
Figure 1 depicts the key components of R-CAST. Below we
describe R-CAST from three perspectives: cognitively in-
spiredness, context awareness, and teamwork readiness.

Cognitively-Inspired Architecture
The RPD Model The original RPD model (Klein 1989)
includes a recognition phase and an evaluation phase. In
the recognition phase, a decision maker synthesizes the ob-
served features about the current decision situation into ap-
propriate cues or pattern of cues, then uses a strategy called
“feature-matching” to recall similar cases by matching the
synthesized cues with previous experience. In the case that
feature-matching cannot provide an acceptable solution due
to lack of information or experience, “story-building” is
used to develop a potential explanation of how the current
situation might have been emerging, and a workable solution
can be suggested afterward. The recognition phase has four
products: relevant cues (what to pay attention to), plausible
goals (which goals make sense), expectancy (what will hap-
pen next), and courses of action COA (what actions worked
before). In the evaluation phase, a decision maker evaluates
the recognized courses of action one by one until a work-
able solution is obtained. Due to the dynamic and uncertain
nature of the environment, a decision maker keeps moni-
toring the status of expectancy so that the situation can be
further diagnosed in case that the decision maker had misin-
terpreted the situation. Similar to Case-based reasoning, the
RPD model stresses on Simon’s satisficing criterion (Simon
1955) rather than optimizing in option evaluation.

Iterative RPD Process R-CAST has realized a set of
functions corresponding to the main steps of the RPD model:
situation investigation, feature matching, recognition evalu-
ation, action implementation, and expectancy monitoring.

Situation investigation is a process for collecting missing
information; it is the key to evolving recognitions. Given
a task, if an agent has the capacity and capability to gather
information, it can activate an information-seeking plan. If
the agent is incapable or has insufficient resources to do so,
it can send an information request to others. On the other
side, other agents who have anticipated the decision maker’s
information needs may also proactively provide relevant in-
formation to the decision maker. While an R-CAST agent
gathering information, it triggers the feature matching func-
tion to check whether there are past experiences similar to
the current situation. Because the information regarding the
current situation is recorded in the agent’s KB, the feature
matching process simply iterates over the experiences in the
active experience base and posts queries to the agent’s KB
with the cues to be evaluated. The experiences with the
most number of cues satisfied with respect to the KB are
the recognition results. Recognition evaluation is a process
for selecting a workable course of action. For human deci-
sion makers, evaluation is a mental simulation process: peo-
ple imagine how the course of action may evolve and judge

Situation
Recognition

RPD-based
Decision
Making

Teamwork
Manager

Taskwork
Manager

Expectancy
Monitoring

Experience
Adaptation

Decision &
Adaptation

Knowledge
Base

Communication

Situation Analysis

Situation
Investigation

Feature Matching

Expectancy
Monitor

COA
Evaluation

Implementation

start

end

unfamiliar familiar

workable

unw
orkable

Experience
Base

Experience
Base

Figure 1: R-CAST Architecture.

whether the relevant goals can be achieved. An R-CAST
agent achieves this by checking the constraints (precondi-
tions and effects) associated with the chosen plan (course of
action) with respect to its KB. If the preconditions are satis-
fiable and the effects are consistent, the plan is deemed as a
workable solution for the current situation and the agent will
coordinate with other teammates to execute the plan. Oth-
erwise, the agent has to make another round of recognition,
going through the RPD process again.

An expectancy states what will happen, serving as a gate-
condition for retaining the current recognition. To support
adaptive decision making (Serfaty, Entin, & Johnston 1998),
an R-CAST agent keeps monitoring the expectancies of a
recognition until the completion of the selected course of
action. The invalidation of some expectancies may indicate
that the once workable recognition is no longer applicable
to the changing situation. The already executed part of the
selected course of actions may still make sense, but the rest
has to be adjusted. In such cases, the R-CAST agent can
start another round of recognition.

The RPD model implemented in R-CAST is an iterative
model, which explicitly incorporates the idea of “recogni-
tion refinement”, and supports situation reconsideration dur-
ing action execution phase. R-CAST agents can make a se-
quence of decisions, with one decision refining the preced-
ing ones, and such a sequence is only restricted by the exter-
nal time pressure. An agent can always suggest a decision
that is acceptable relative to the timing constraints.
Collaborative RPD Process The implemented RPD
model in R-CAST is also a “collaborative-RPD” process.
An R-CAST agent can not only act as a human’s partner,
but also team up with other R-CAST agents. Given a spe-
cific decision task, each agent of a group can be a decision
maker or a supporter, depending whether the agent has the
required expertise for making decisions about the task. A de-
cision maker agent (DMA) can derive its information needs
regarding the current decision task from the cues consid-
ered in the active experience base and the expectancies of
those experiences that are found similar to the current sit-
uation. The derived information needs can be satisfied in
three ways. First, teammates can proactively provide the
decision maker agent with information relevant to the cues
that the DMA is considering. As we mentioned earlier, this
happens when a teammate has been informed of the deci-
sion task, and the teammate has the required expertise (e.g.,

its experiences overlap with the DMA’s). Second, in cases
where agents do not have overlapped experiences, the deci-
sion maker may explicitly request information from team-
mates. Here, ‘ask-reply’ becomes a handy way to compen-
sate the limitations of proactive communication. Third, the
DMA can subscribe information relevant to the expectancies
that need to be continuously monitored. When the DMA in-
forms other teammates about the recognition, it is also im-
plicitly requesting them to monitor the expectancies. Such
collaborative expectancy monitoring takes full advantage of
the team’s distributed cognition, so that the DMA can ter-
minate the activity resulted from a wrong recognition at the
earliest opportunity.

Context Awareness Architecture
Capturing and using context in decision making is challeng-
ing because a desirable context representation should not
only support the identification of information relevant to de-
cision making, but also support dynamic changes of context
in a way that reflects how a human adapts his/her decisions
in a dynamic environment (this may well support human
decision makers better than more arbitrary rule-based sys-
tems). In doing so, a naturalistic decision making model —
Recognition-Primed Decision (RPD) is used to represent the
generic decision-making process context within R-CAST. To
facilitate the reuse of domain knowledge related to decision
making, we organize context related to domain knowledge
into two separate, but related, representations: experience
context and inference context. Put together, these three types
of context representation enable R-CAST to use and inte-
grate various contexts for identifying information relevant to
decision making, for adapting decisions to a dynamic envi-
ronment, and for facilitating reuse of context-related domain
knowledge. We next highlight the three important aspects of
context representation.

Decision Process Context Multi-context team decision
making can be very complex especially when human fac-
tors and computing technologies are mutually constraining
in their interaction. To reduce the gap between human deci-
sion makers and cognitive decision aids (agents), R-CAST
is built upon a naturalistic decision making model that cap-
tures how domain experts make decisions based on experi-
ences and situational similarity recognition. R-CAST adopts
a process context to capture the major phases in the RPD
process (including situation recognition, expectancy moni-
toring, decision adaptation, and COA simulation), and how
information is used in these phases.

The decision process context is at a higher level than in-
ference context and experience context; it not only presents
its human peer a view of the progress of the current deci-
sion making activity, but also governs the selection of the
appropriate inference context and experience context. For
instance, R-CAST uses the concept of “decision spaces” to
organize experiences by decision themes: experiences re-
lated to one decision theme are maintained in one decision
space or experience knowledge base (EKB). R-CAST can
manage multiple decision spaces at run time. The nature of
a situation determines what the current working-context is,

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Cue

COA

NameName NameNameName

Name Name

Name NameName Name Name

Name Name NameName

Name Name Name Name

Name Name Name Name Name

Expectancy

Anomaly

Figure 2: Hierarchical Experience Context.

and situational changes can cause the switch of one context
to another. Consequently, an agent working in one decision
space can switch into another decision space, and return to a
previous space when the current context switched back. This
feature allows the implementation of decision aids that can
dynamically switch among multiple types of context (e.g.,
humanitarian, peacemaking, and combat contexts).

Also, the phase of “expectancy monitoring” captures how
a human decision maker detects anomalies even after a deci-
sion is made so that he/she can re-assess the original de-
cision to determine how to best respond to the anomaly.
Anomalous situations can happen frequently in a dynamic
environment. For example, suppose under the current sit-
uation it is expected that two crowds, G1 and G2, should
be active in two isolated regions. Anomaly occurs if G1 and
G2 start to move closer and merge. R-CAST is implemented
in a similar way: it can adapt its decision by detecting and
responding to situations that are anomalies to the original
expectancy (i.e., what is observed/informed conflicts with
what was expected).

Hierarchical Experience Context The experience con-
text captures domain-specific experience used by the RPD
model, and organizes it in a hierarchical structure (Figure 2)
to facilitate the reuse of abstract experience context.

Decision making in human society is typically connected
with organizational hierarchies; a higher-level decision-
making task usually depends on the results of lower-level
decision-making tasks. In order to support multiple-level de-
cision makings (Hollenbeck et al. 1995), experiences in an
experience base are organized hierarchically in “tree-like”
structures: experiences at a higher level node are refined by
those at a lower level (with more relevant cues and expectan-
cies considered).

An R-CAST agent uses “recognition anchors” to mark the
nodes that it believes are closest in similarity to the current
situation. A recognition anchor determines the collection of
cues, expectancies, COA, and anomalies that an agent needs
to pay attention to. Normally, an R-CAST agent will con-
sider all those cues, expectancies, COA, and anomalies as-
sociated with the nodes starting from the root node along
the path leading to the recognition anchor being considered.
Since an agent may explore multiple ways to gain under-
standing of a decision situation, it could investigate multi-
ple branches of an experience tree, and thus there may have

multiple active anchors within a decision space. The config-
uration state of an active decision space can be represented
as a bit string marking whether a node is recognitionally an-
chored by an agent. The “experience context” of an R-CAST
agent is composed of the configurations of the active deci-
sion spaces, one for each space.

The content of a context is derived from cues, expectan-
cies, COA, and anomalies. Cues are represented as formulas
in first-order logic. A cue can be very complex such that the
cue itself is the root of an inference tree consisting of many
other intermediate or directly-observable types of informa-
tion. This is typical in real-world domains and it is exactly
why collaborative computing and distributed cognition play
a key role here, because one single agent/human simply can-
not handle the complexity due to lack of sufficient exper-
tise or inference knowledge. Expectancies are represented
as formulas in temporal logic. Depending on the importance
of a violated expectancy, an agent may choose to adapt the
already adopted COA, or backtrack along the experience hi-
erarchy to seek a better recognition. COAs are written in a
variant of the process language MALLET (Fan et al. 2006a),
where each process can be associated with preconditions,
statement constraints, and escape conditions. These condi-
tions are first-order formulas; they are evaluated at each time
step to determine the collaboration/communication opportu-
nities, whether to pursue a specific teamwork process, and
how to respond to teamwork failures. Anomalies are unex-
pected exceptions; they serve to correct or reject the current
situation recognition, and more importantly, they are indica-
tors for switching between different contexts.

Context switching can cause an agent to change its at-
tention from one experience tree to another. The notion of
recognition anchors facilitates context freeze and defreeze
when an agent needs to switch among multiple active de-
cision tasks in high demanding situations. For example,
a Command and Control (C2) team may decide to adjust
the military forces allocated to a humanitarian mission to
a peacekeeping mission prompting in a nearby location, as
more and more spot reports indicate that the situation there
might evolve towards undesirable direction. However, the
agent has to keep track of the evolvement of both the human-
itarian mission and the peacekeeping mission so that it can
coordinate activities such as resource allocations and infor-
mation sharing between the two missions and among other
members of the C2 team.
Inference Context The inference context captures infer-
ence knowledge that links high-level information needs to
lower-level information that can be obtained from informa-
tion sources or directly observed by agents. An inference
context describes the context/situation for drawing various
kinds of inference.

The inference context is used in two ways in R-CAST.
First, it is used to relate high-level information needs, once
they are identified, to low-level information, and identify
missing relevant information. Second, the inference con-
text is used to aggregate lower level information, once they
are available, to higher level features. Separating the infer-
ence context from the process context and the experience

context enables a piece of inference knowledge to be used in
multiple phases of a process context, and for multiple expe-
riences. For instance, inference knowledge that relates ship-
ping density in an area to geopolitical cost can be used to
evaluate a course of action in responding to a threat. The
same knowledge can also be used for cue matching (e.g., if
the cue of an experience involves geopolitical cost), and for
expectancy monitoring.

Teamwork Ready Architecture
R-CAST’s teamwork readiness capability is inherited from
the CAST architecture (Collaborative Agent for Simulating
Teamwork) (Yen et al. 2001).

Each agent in a team is initially equipped with a profile of
team processes. The processes are then transformed at com-
pile time into Petri-net-like internal structures, which are
organized hierarchically so that agents can make inference
of collaboration/information needs at an appropriate level.
Based on such a computational SMM of team processes, R-
CAST offers services for managing dynamic agent/role as-
signment, for monitoring teamwork progresses, and for ini-
tiating context-centric communications.

A teamwork process can be partial in the sense that cer-
tain roles (agent variables) need to be determined at run
time. This to some extent is similar to the idea of incomplete
recipes in the SharedPlans theory (Grosz & Kraus 1996).
This issue is tackled in R-CAST by allowing a team to dy-
namically negotiate on “who works on what” when the team
proceeds to a point where the agent-role(task) mapping is
still incomplete. Such a point is typically associated with
certain constraints for assigning a task(role) to a potential
agent. Each team member, based on its own belief base,
can propose a set of candidates by stepwisely relaxing the
constraints, if possible. It is flexible to use a majority vote
or a randomly selected team member to finally establish an
agreement on the agent assignment.

Inter-agent communication and its management is also a
crucial part of the R-CAST architecture. An agent is re-
quired to inform other teammates of its task progress at criti-
cal points. For instance, a group of agents involved in a team
process have to send synchronization messages to make sure
everyone is ready before executing the process. By allow-
ing agents to exchange information regarding their team-
work progress, they can have a global picture of the dynamic
progress of the committed team activity. This enables agents
to determine how their individual actions fit together, to act
proactively to achieve coherent teamwork, and to anticipate
the opportunities of offering help. Knowing of teamwork
progress is also very useful in developing shared situation
awareness when the communications bandwidth is limited.
Teamwork progress can be exploited such that an agent can
progressively update the status of other team members’ in-
formation needs. An agent can thus offer timely help with-
out disturbing the other agents with information no longer
relevant to their activities.

Integration of Team Intelligence
The integrative aspects of R-CAST is two-fold. First, as de-
scribed in Section 1, developing human-centered agent ar-

chitectures requires the integral consideration of architec-
tural flexibility, teamwork adaptability, and context reason-
ing capability. However, actually implementing systems
conforming to these high-level principles is a significant
challenge, which R-CAST meets.

R-CAST employs a knowledge-based approach to
achieve architectural flexibility. All R-CAST components
are integrated around its internal knowledge base (KB).
Specifically, KB is used in cue-matching to identify missing
information, in expectancy monitoring to check the valida-
tion of situation recognition, in COA evaluation to check the
feasibility of a course of action, and in team process execu-
tion to check the readiness of all team members involved.
Team plans are described in a knowledge representation lan-
guage called MALLET; this facilitates reuse of generic pro-
cess knowledge across domains. R-CAST components can
be configured using a profile, which allows the replacement
of certain components to serve different studies.

R-CAST offers two approaches to achieve teamwork
adaptability. First, it supports a functional SMM with a
richer structure that not only covers team structures and team
processes used by agents to infer collaboration needs, but
also covers dynamic teamwork contexts. Such an enhanced
representation of shared mental models enables an R-CAST
agent to better manage its own ‘focal’ attention and to ini-
tiate human-agent collaboration in a human-appreciatable
way. Second, non-trivial collaborative multi-agent systems
need to continuously make decisions, which demands a
group of agents to coordinate not only on domain-specific
tasks but also in the decision-making process itself. Mesh-
ing humans’ decision making process with agents’ deci-
sion making process promises better human-agent collabo-
ration. However, it requires humans and agent teammates
to maintain a shared understanding of the decision mak-
ing progress. To this end, R-CAST has incorporated the
recognition-primed decision model (RPD)— a naturalistic
decision making process that may well support human deci-
sion makers better than more arbitrary rule-based systems.

R-CAST supports context reasoning by distinguishing de-
cision process context, experience context and inference
context. These three types of context representation together
enable R-CAST agents to reason about contexts for reusing
inference knowledge and experience across multiple con-
texts, for identifying information relevant to decision mak-
ing, and for adapting decisions to a dynamic environment.

Second, R-CAST is a system reflecting the synergy of
cognitively inspiredness, context awareness, and teamwork
readiness. Its cognitively-inspiredness lies in the using of
Klein’s naturalistic decision making model as the glue of
teamwork; its context awareness is supported by three forms
of context representation: decision process context, expe-
rience context, and inference context; and its teamwork
readiness manifests in the Petri Nets-based representation of
teamwork processes and capabilities of monitoring progress.
These three aspects are tightly integrated. For instance, the
RPD process breaks decision making into two phases, recog-
nition and evaluation, each of which maps to a set of func-
tions in R-CAST, for situation investigation, feature match-
ing, recognition evaluation, implementation, and expectancy

S3

TK-500

UA-503

GNV-237G?-236

T A

S2 S4

Figure 3: Use R-CAST to adapt decisions.

monitoring. These functions trigger context management,
as well as drive information processing and proactive infor-
mation sharing, to orchestrate team activities including both
decision making and domain tasks.

Applications
The integration of team intelligence within R-CAST offers
at least two benefits. First, R-CAST provides a flexible solu-
tion to developing decision aids for supporting human deci-
sion making teams under time stress. Second, R-CAST can
act as virtual teammates of human team members in infor-
mation and knowledge intensive domains. The benefits can
be buttressed by its applications as described below.

The capability of R-CAST as decision aids was evaluated
in a simulated battlefield (Fan et al. 2005). We used the
DDD (Distributed Dynamic Decisionmaking) environment
(Kleinman, Young, & Higgins 1996) as the testbed, and de-
signed scenarios that involve a blue (friendly) force consist-
ing of three battle functional areas (BFAs): the intelligence
cell (S2), the operations cell (S3), and the logistics cell (S4).

As shown in Figure 3, in the frontier of a battlefield, there
is a supply route connecting an airport A and a target area T.
The roles of the BFAs were simplified as follows: S2 con-
trols a UAV to collect information and identify whether an
approaching object (task) is a neutral force or enemy unit;
S3 controls a tank to destroy enemies and protect the supply
route; and S4 controls a truck to deliver supplies from A to T
(the truck will be destroyed if it is within the attack range of
an approaching enemy). The overall goal of the blue force
is to protect the airport A and the target area T, and to ensure
as many rounds of supplies as possible are delivered by S4
from A to T. The BFAs have to collaborate with each other
in order to have a good performance.

An experiment was conducted to understand whether R-
CAST could enhance the performance of Command and
Control (C2) teams under time stress. Two types of teams
were used: H teams consisting of 3 human subjects play-
ing the roles of S2, S3 and S4; HA teams consisting of 3
R-CAST agents playing the roles of S2, S3 and S4, with the
S3 agent paired with a human subject. HA Teams involved

Enemy destroyed (%)

0%

20%

40%

60%

80%

100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Speed

Agent-Human

Human

(a)

Number of successful delivery

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Speed

Agent
Human

(b)

L M H
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
API Verse CSF

Context Switching Frequency

A
ve

ra
ge

 P
er

fo
rm

an
ce

 In
de

x

HA
HH

(c)

HA HH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Boxplot MAR * TType

M
is

se
d−

A
tte

nt
io

n
R

at
e

Team Type

(d)

Figure 4: (a) Enemies destroyed by S3; (b) Supplies delivered by S4. (c) API verse CSF; (d) Boxplot of MAR by TType.

Figure 5: Use R-CAST to address 3-block challenge.

both human-agent and agent-agent collaborations.
Fig. 4(a) and 4(b) plot the average performance in terms

of percentage of enemy destroyed and times of successful
delivery of supplies. While Fig. 4(b) does not show much
difference between H teams and HA teams regarding suc-
cessful delivery, Fig. 4(a) clearly indicates that human-agent
teams performed much better than pure human teams regard-
ing enemy destroyed: When time pressure is low, both the
HA and H teams could identify and destroy all the enemies;
as time pressure increased, the performance difference also
increased. The result confirmed that R-CAST agents as deci-
sion aids could enhance the performance of C2 teams under
varying time pressure in handling threats.

Another study (Fan et al. 2006b) was conducted to evalu-
ate whether the context-awareness feature of R-CAST could
help C2 teams to make real-time decisions involving multi-
ple dynamic contexts. Still involving S2, S3 and S4 roles,
C2 teams were assumed to operate in complex urban ter-
rain, reacting to potential threats associated with crowds,
IEDs (Improvised Explosive Device), and key insurgents.
It was named as ‘3-block challenge’ because within three-
block area in a city officers in command must react to a con-
stant flow of intelligence reports and make timely decisions
for three kinds of tasks including combat, peacekeeping and
humanitarian missions. Figure 5 is a screen-shot showing a
map display that S2 and S3 human subjects used during the
experiments to facilitate the assessment of threat locations

and the allocation of friendly units to handle threats.
A 2×3×3 factorial treatment design was used, involving

three factors: team type, context switching frequency (CSF),
and task complexity. Two types of C2 teams were formed
from 30 subjects randomly recruited from a US Army ROTC
(Reserve Officer Training Corps) organization: S2H-S3H
teams (each has a subject playing S2 and a subject play-
ing S3), and S2A-S3HA teams (each has an R-CAST agent
playing S2 and a subject together with an R-CAST agent
playing S3). The context switching frequency and task com-
plexity each has three levels, varying the frequency of up-
dating a C2 team with field information and the number of
active threats in the field, respectively.

Fig. 4(c) plots the API (Average Performance Index) per-
formance of HA and HH teams under difference levels of
CSF. It shows a performance drop for both HH and HA
teams as the context switching frequency increased: both
suffered more under more time-stressed situations. How-
ever, HA teams performed significantly better than HH
teams at each CSF level. The performance of a secondary
task (a subject’s attention paid to the key buildings nearby
the target being tasked) is plotted in Fig. 4(d), which shows
that HA teams missed significant less attentions than HH
teams. Overall, this experiment demonstrated that R-CAST
agents, as both teammates (S2) and decision aids (S3), can
play a critical role in alleviating the impact of human’s cog-
nitive capacity on the performance of decision making tasks
involving multiple contexts.

Related Work and Summary
Among related work, STEAM (Tambe 1997) and COLLA-
GEN (Rich & Sidner 1997) are two collaborative agent ar-
chitectures built on the joint intentions theory (Levesque,
Cohen, & Nunes 1990) and the SharedPlans theory (Grosz
& Kraus 1996), respectively.

STEAM is built on top of the Soar architecture (Laird,
Newell, & Rosenbloom 1987), using joint intentions as a
building block to hierarchically build up the mental atti-
tude of individual team members. R-CAST differs from
STEAM in several important aspects. First, while team-
work in STEAM is realized by building up a hierarchy of
joint intentions, R-CAST (CAST) employs a shared mental
model of team processes to coordinate team activities and in-
fer collaboration needs. Its agent-binding capability borrows
from the idea of ‘plan evolution’ of the SharedPlans formal-

ism. Second, teamwork in R-CAST not only manifests in
its mechanism of shared team processes, it also reflects at a
meta-level in the sense that team members can collaborate
along the recognition-primed decision process.

COLLAGEN, built on top of the principles that underlie
human collaboration in discourse theory, realizes a standard
mechanism for maintaining the flow and coherence of in-
teractions between a human user and an intelligent agent.
While both R-CAST and COLLAGEN have a root in the
SharedPlans theory, R-CAST focuses more on the role of
cognitive aids to human decision making teams.

The proxy-based DCI architecture (Schreckenghost et al.
2002) has been proposed for supporting multiple humans in-
teracting with multiple automated control agents. However,
it is unclear how DCI allows agents to respond to novel sit-
uations and manage multiple contexts. Such functionalities
are gracefully offered by R-CAST due to the synergistic in-
corporation of the RPD model. Another related work is the
DEFACTO system (Schurr et al. 2006), which provides a
multiagent environment for training incident commanders.
While R-CAST can also be used for training purpose, the
vision is to act as cognitive aids in the real fields.

In sum, with the integration of various forms of team in-
telligence including shared teamwork process and progress,
dynamic context management and information dependency
reasoning, and recognition-primed collaborative decision
mechanism, R-CAST offers a flexible solution to develop-
ing cognitive aids for supporting human-centered teamwork
in information and knowledge intensive domains. Intelli-
gence analysts need tools and techniques to help protect
themselves from avoidable errors (Heuer 1999). Our studies
and the experiments conducted so far demonstrated that R-
CAST agents can serve as one such tool to achieve reduced
cognitive load, enhanced situation awareness, and positive
human-agent collaboration.

Acknowledgments
This work is supported as an FY06 Research Task under the
Army Research Laboratory’s Advanced Decision Architec-
tures Collaborative Technology Alliance (ARL ADA CTA).

References
Cannon-Bowers, J. A.; Salas, E.; and Converse, S. 1990.
Cognitive psychology and team training: Training shared
mental models and complex systems. Human Factors So-
ciety Bulletin 33:1–4.
Fan, X.; Sun, S.; McNeese, M.; and Yen, J. 2005. Ex-
tending the recognition-primed decision model to support
human-agent collaboration. In AAMAS ’05: Proceedings
of the fourth international joint conference on Autonomous
agents and multiagent systems, 945–952. ACM Press.
Fan, X.; Yen, J.; Miller, M.; Ioerger, T.; and Volz, R. A.
2006a. MALLET–a multi-agent logic language for encod-
ing teamwork. IEEE Transaction on Knowledge and Data
Engineering 18(1):123–138.
Fan, X.; Sun, B.; Sun, S.; McNeese, M.; and Yen, J.
2006b. RPD-enabled agents teaming with humans for

multi-context decision making. In Proceedings of the fifth
international joint conference on Autonomous agents and
multiagent systems, 34–41. ACM Press.
Fan, X.; Yen, J.; and Volz, R. A. 2005. A theoretical frame-
work on proactive information exchange in agent team-
work. Artificial Intelligence 169:23–97.
Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group actions. Artificial Intelligence 86:269–358.
Heuer, R. J. 1999. Psychology of Intelligence Analysis.
Center for the Study of Intelligence.
Hollenbeck, J.; Ilgen, D.; Sego, D.; Hedlund, J.; Major,
D.; and Phillips, J. 1995. The multi-level theory of team
decision-making: Decision performance in teams incorpo-
rating distributed expertise. Journal of Applied Psychology
80:292–316.
Jennings, N. R. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint inten-
tions. Artificial Intelligence 75(2):195–240.
Klein, G. A. 1989. Recognition-primed decisions. In
Rouse, W. B., ed., Advances in man-machine systems re-
search, volume 5. Greenwich, CT: JAI Press. 47–92.
Kleinman, D.; Young, P.; and Higgins, G. 1996. The
DDD-III: A tool for empirical research in adaptive organi-
zations. In Proceedings of the 1996 Command and Control
Research and Technology Symposium.
Laird, J.; Newell, A.; and Rosenbloom, P. 1987. Soar: an
architecture for general intelligence. Artificial Intelligence
33(1):1–64.
Levesque, H. J.; Cohen, P. R.; and Nunes, J. 1990. On
acting together. In Proceedings of AAAI-90, 94–99.
Rich, C., and Sidner, C. 1997. Collagen: When agents col-
laborate with people. In Proceedings of the International
Conference on Autonomous Agents (Agents’97), 284–291.
Schreckenghost, D.; Martin, C.; Bonasso, P.; Kortenkamp,
D.; Milam, T.; and Thronesbery, C. 2002. Supporting
group interaction among humans and autonomous agents.
Connection Science 14(4):361–369.
Schurr, N.; Patil, P.; Pighin, F.; and Tambe, M. 2006. Using
multiagent teams to improve the training of incident com-
manders. In AAMAS ’06: Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multia-
gent systems, 1490–1497.
Serfaty, D.; Entin, E.; and Johnston, J. 1998. Team coordi-
nation training. In Cannon-Bowers, J., and Salas, E., eds.,
Making decisions under stress: implications for training
and simulation. APA Press. 221–245.
Simon, H. 1955. A behavioral model of rational choice.
Quarterly Journal of Economics 69:99–118.
Tambe, M. 1997. Agent architectures for flexible, practi-
cal teamwork. In National Conference on Artificial Intelli-
gence (AAAI), 22–28.
Yen, J.; Yin, J.; Ioerger, T.; Miller, M.; Xu, D.; and Volz,
R. 2001. Cast: Collaborative agents for simulating team-
works. In Proceedings of IJCAI’2001, 1135–1142.

