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ABSTRACT: One of the challenging issues in the domain of C2 in complex and urban terrain is how to assist human 
combat staff to effectively collaborate and make decisions under multiple contexts, and to help people switch their 
attentions to the most urgent decision tasks.  This paper describes a comprehensive approach that uses RPD-enabled 
agents to support timely decision-making under multiple contexts. We introduce the R-CAST decision support system 
and report our effort of using the R-CAST agent architecture to assist human combat staff in dealing with 
information challenges in complex and urban terrain. The simulation demonstrates that by modeling the information 
requirements of the three block challenge as relevant cues and expectancies, R-CAST agents can effectively share 
relevant information for complex decision situations. 
 
 
1. Introduction 
 
The information age has brought dramatic and challenging 
changes in contemporary combat operations. The term 
associated with this change is Network-Centric Warfare 
(NCW). From an information technology perspective, 
NCW is defined as an information superiority-enabled 
concept of operations that generates increased combat 
power by networking sensors, decision-makers, and 
shooters to achieve shared awareness, increased speed of 
command, higher tempo of operations, greater lethality, 
increased survivability, and a degree of self 
synchronization. In essence, NCW translates information 
superiority into combat power by effectively linking 
knowledgeable entities in the battlespace (Alberts, 2002). 
 
The focus of this research is targeted at coupling software 
agents and teamwork approaches towards the 
informational challenges associated with C2 in complex 
and urban terrain (C2CUT). Urban combat zones are 
complex and dynamic and there is a critical need for 
gathering and sharing intelligence information. The 
informational needs associated with such C2 

environments are indistinct, unstructured, and often can 
cause information overload or deficiencies.   
 
To study the information sharing challenges in C2CUT we 
have created a simulated scenario called three block 
challenge: within three-block area in a city officers in 
command must react to a constant flow of intelligence 
reports and make timely decisions for three kinds of tasks 
including combat, peacekeeping and humanitarian 
missions. The idea of conducting peacekeeping, 
humanitarian, and combat missions in close proximity and 
simultaneously is a new way of conducting 
operations. Each mission can have an affect on the 
other. The ability of staff officers to monitor these 
situations and react in a timely manner is the key to 
success.   
 
This issue is challenging because it requires effective team 
collaborations to establish shared situation awareness, to 
rapidly link dynamic information from multiple sources for 
assessing potential threats, for identifying areas of 
interest, and for choosing optimal corridors for movement 
in different contexts (e.g., officers should react differently 
to combat, peacekeeping and humanitarian missions). 
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To assist human combat staff in dealing with the three-
block challenge, we use R-CAST, a collaborative agent 
architecture that is extended from the CAST architecture 
(Collaborative Agents for Simulating Teamwork) (Yen, et 
al., 2005) by incorporating a computational Recognition-
Primed Decision (RPD) model (Klein, 1993) for supporting 
experience-based decision-making. The remainder is 
organized as follows. Section 2 reviews recent studies on 
RPD; Section 3 introduces the R-CAST architecture; 
Section 4 describes the using of R-CAST to assist the 
combat, peacekeeping and humanitarian missions; 
comparison and discussion is given in Section 5 and 
Section 6 summarizes the paper. 
 
2. Towards Collaborative RPD 
 
The RPD model (Klein, 1993) captures how domain experts 
make decisions based on the recognition of similarity 
between the current situation and past experiences. The 
RPD process has two phases: recognition and evaluation. 
In recognition phase, a decision maker needs to develop 
situation awareness and recognize what course of actions 
(COA) worked before in a similar situation. In evaluation 
phase, a decision maker needs to evaluate each COA by 
imaging how it will evolve. If a COA does not work for the 
current situation, the decision maker can either adjust it, or 
find and examine other COAs until a workable solution is 
obtained. 
 
The RPD model states that “feature-matching” and “story-
building” are two typical strategies used by experts to 
develop situation awareness. In feature-matching, a 
decision maker tries to find whether he/she has ever 
experienced situations similar to the current one by 
matching the set of observed cues (synthesized from 
information describing the current situation) with the 
pattern of cues considered in past experiences. In case 
that feature-matching cannot produce an adequate 
account for the current situation due to lack of experience, 
story-building will be used to construct an explanation, by 
coherently linking the observed information. A story gives 
an explanation of how the current situation might have 
been emerging. When building a story, a decision maker 
need explore potential hypotheses and evaluate how well 
each of them may fit what have been observed. 
 
Recognition results in four products: relevant cues (what 
to pay attention to), plausible goals (which goals make 
sense), expectancy (what will happen next), and course of 
actions (what actions worked in this type of situation). An 
expectancy serves as a gate-condition for continuing 
working on the current recognition. Due to the dynamic 

and uncertain nature of the environment, it is important to 
monitor the status of expectancies because a decision 
maker may have misinterpreted the current situation but 
he/she cannot recognize it until some expectancy is 
invalidated as the situation further evolves. In such cases, 
the decision maker needs to further diagnose the current 
situation (e.g., to gather more information).  
 
There have been several attempts in implementing the 
RPD model. For example, long-term memory structure 
(Warwick, et al., 2001) and neural networks (Liang, et al., 
2001) were used to represent experiences. Fuzzy 
techniques were used (Robichaud, 2002) to incorporate a 
fuzzy interpretation of the external environment. While the 
abovementioned approaches only implemented the 
feature-matching strategy, the Navy DSS system 
(Morrison, et al., 1996) did allow a decision maker to build 
alternative stories. There are also attempts in integrating 
RPD with agent technologies (Norling, et al., 2000; 
Sokolowski, 2003). For example, Norling, et al. (2000) 
explored the ways of using RPD to enhance BDI agents so 
that the simulations of human societies would be more 
realistic. These attempts are limited in that the evaluation 
phase of RPD is ignored (or assumed to be done by 
human) and the RPD model is considered as an internal 
process of individual agents. The second limitation 
actually leaves the most exciting part of RPD as an open 
research issue: how a team of agents, with a shared 
computational RPD process, are supposed to work 
together in collaboratively developing situation 
awareness, in effectively anticipating others’ information 
needs relevant to cues and expectancies, and in 
proactively sharing information to make better decisions 
under time pressure. 
 
The RPD model captures the cognitive activity 
undergoing in the mind of a decision maker when he/she 
faces a decision task. In essence, RPD is an individual 
process because it  is within a decision maker's mental 
state. However, it becomes more interesting when a team 
of human experts, each making decisions using RPD, 
needs to work together in distributed dynamic 
environments. Intuitively, team performance can be 
considerably enhanced if the team can establish a shared 
mental model about the dynamic progress of the RPD 
process being pursued by the decision maker. 
Emphasizing the individual nature of the RPD process may 
weaken or ignore the active roles played by the other 
teammates in the process, especially from the information 
seeking and sharing perspective.  
 
On the other hand, as domain complexity increases, 
decision making often involves various kinds of expertise 
and experiences, which are typically distributed among a 



group of decision makers. In such cases, the timeliness 
and quality of decision making highly depend on the 
effectiveness of team wide collaboration (e.g., anticipating 
others’ information needs, proactive sharing information 
and expertise). 
 
Thus, in our R-CAST model described below, we consider 
the situations where a group of people who are experts in 
different areas, each assisted by one RPD-enabled agent, 
face the pressure to make better and faster decisions in an 
environment with high domain complexities. In such a 
setting, collaboration may exhibit among RPD-agents, 
between an RPD-agent and its human partner, and among 
the human experts.  
 
3. R-CAST: RPD-enabled Agent Architecture  
 
Figure 1 shows an abstract view of the R-CAST agent 
architecture.  
 

 
 
Shared Mental Model (SMM): SMM stores the knowledge 
and information that are shared by all the member of a 
team. The SMM implemented in R-CAST contains four 
components: team processes, team structure, shared 
domain knowledge, and information-needs graphs. The 
SMM captures two types of information about a team 
process: the process template--represented as Predicate 
Transition (PrT) nets, and the process states--represented 
by token configurations, which track the current progress 
of an instantiated team process. A team structure 
specifies membership of teams and subteams, role 
requirements of a team, and the roles each agent can play. 
The shared domain knowledge may include inter-agent 
conversation protocols  and social norms to follow, 
domain-specific inference knowledge, etc. An information-
needs graph maintains a dynamic, progress-sensitive 

structure of teammates’ information-needs, ensuring that 
only relevant information is delivered to the right entity at 
the right time. The SMM Management module is 
responsible for updating and refining the SMM and may 
entail inter-agent communications to maintain cross-agent 
consistency of certain critical parts of team members’ 
SMMs. 
 
Individual Mental Model (IMM): IMM stores those mental 
attitudes privately held by individual agents. It may 
contain the agent’s domain expertise pertinent to its role in 
the team and its beliefs about the dynamic world and other 
team members. It is constantly updated by sensor inputs 
from the environment and communication messages 
received from other agents.  
 
Attention Management (AM): An agent may have multiple 
goals  to pursue. An R-CAST agent uses the AM module 
to manage the attentions under its concern. For instance, 
based on the agent’s situation assessment and 
cooperation requests from other agents, the agent may 
pay more attention to one goal, or suspend the pursuit of 
one goal and switch to another. More specifically, a team 
process may involve various kinds of decisions (e.g., 
working under multiple contexts). Since each decision task 
will trigger one RPD process, it is the AM’s responsibility 
to effectively and carefully adjust the decision-maker 
agent’s attentions on decision tasks. 
 
Process Management (PM): Once a goal is committed, the 
PM will choose a plan (COA) that can bring about the goal 
and create a team process. The PM is also responsible for 
orchestrating team members’ behaviors so that they could 
collaborate smoothly both when everything is progressing 
as planned and when something goes wrong 
unexpectedly. More specifically, in normal circumstances, 
PM ensures all the team members behave strictly 
according to the committed (intended) plans, and 
synchronize their behaviors whenever necessary. When 
agents encounter in exceptional circumstances, they use 
their PM modules to collaboratively adapt to changes in 
the environment (exception handling). 
 
Decision Management (DM): A n  R-CAST agent may 
trigger the RPD decision process in one of three modes: 1) 
based on human’s recognition, 2) based on agent’s 
recognition, or 3) based on decision points explicitly 
specified in a plan. In the first mode, the need for making a 
decision is first recognized by a human based on his 
expertis e and his assessment of the current situation. He 
then delegates the identified decision-making task to his 
assistant agent, who will trigger the RPD process and 
inform other teammates of the decision-making request so 
that they can collaborate in making the decision. In the 
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Figure1. The R-CAST Architecture 



second mode, the need for making a decision is recognized 
by an agent based on its situation assessment. Running in 
this mode, an R-CAST agent needs to continually pay 
attention to the changes of cues or patterns of cues in 
order to recognize the emerging decision tasks. In the third 
mode, the needs for making decisions are explicitly 
specified in a team plan as fixed decision points, and the 
RPD process is triggered whenever agents reaches a 
decision point. Generally, an R-CAST agent running in the 
first mode can evolve into a system in the second mode, 
after the agent gain enough expertise (e.g., cues to 
consider) for recognizing decision-making tasks through 
learning from humans. Similarly, a system operating in the 
second mode can further evolve to act in the third mode.  
 
R-CAST Reasoning Engine (RRE): RRE is the kernel of 
the R-CAST architecture. RRE anticipates other team 
members’ relevant information needs based on the 
progress information of team activities (from SMM); infers 
tacit information needs based on causal link analysis; 
tracks teamwork progress, if needed; and initiate 
information seeking and sharing to achieve shared 
understanding of situations and team activities.  
 
Communication Management (CM): CM governs inter-
agent communications. An agent may either initiate a new 
conversation context or simply follow existing ones. The 
manager organizes related messages into conversation 
sessions, and monitors the development of on-going 
conversation protocols. CM has algorithms for proactive 
communication among teammates. Upon acquiring new 
information from the environment, CM checks whether the 
new information matches some teammates’ future 
information-needs (from RRE). If there is a match, the 
agent will consider sending out the new information to the 
corresponding needers proactively.  
 
3.1 Information requirements for decision making 
 
Decision making is an information-intensive activity. 
However, information gathering (e.g., reconnaissance 
about enemy activities) can be expensive due to factors 
such as information availability and cognitive constraints. 
It is thus crucial to prioritize information requirements and 
only collect those that are relevant in making a decision.  
 
“Cue” is a key concept in the RPD model. The term “cue” 
refers to an agent’s internal representation of the decision 
situation. Cues are higher-level abstractions of the 
elementary data or synthesization of lower-level 
information. For example, internally an agent may only care 
about the fuzzy category (e.g., high, medium, low) rather 
than the real value of an object’s velocity; the “moving 
pattern” of an approaching unit can be synthesized 

(fused) from the information regarding the moving 
directions of all the individuals in the unit. Generally, a cue 
can be the root of several treelike information-dependence 
structures, which describe the ways how the cue is 
abstracted from low-level information. The information 
requirement reasoning based on information dependency 
structures is given in (Fan, et al., 2005b). 
 
3.2 Decision spaces and experience retrieval 
 
Each decision-making task places certain expertise 
(information) requirements on the decision maker. Two 
decision-making tasks belong to the same type if they 
place the same information requirements (e.g., the same 
collection of cues) to consider. We thus use the concept 
of  “decision spaces” to organize experiences for complex 
domain problems, where experiences related to one 
decision type are maintained in one experience knowledge 
base (EKB). Upon getting (or identifying) a decision-
making task, an agent first needs to decide which decision 
space applies. The collections of cues considered by 
different decision spaces may overlap. Thus, choosing 
decision space itself can be a refinement process. 
However, the support of overlapping decision spaces is 
exactly the feature that can be fully leveraged to support 
multiple-context decision makings. The collection of 
overlapped cues are the shared information requirements 
for making the different types of decisions. It is thus very 
natural for an R-CAST agent who is making a decision of 
type A to share its cue evaluation with another R-CAST 
agent who is making a decision of type B when the same 
cue is involved in both A and B. 
 
For each decision-making situation, an R-CAST agent first 
will retrieve experiences worked before under similar 
situations. The current situation, which is captured in the 
synthesized cues, is matched (with respect to certain 
similarity metrics) with past experiences in the relevant 
EKB. If there is such an acceptable match, the experience 
will be adapted for the new situation. If there is  any 
ambiguity, the decision-making agent has to diagnose the 
current situation to find out what kinds of information are 
still missing and reconsider the situation again. While 
experience matching in RPD is quite similar to case 
matching in case-based reasoning (Aamodt and Plaza, 
1994), the former emphasizes more on the cycle of 
matching-evaluate-information gathering. A skeleton 
algorithm for experience matching can be found in (Yen, et 
al., 2004). 
 
3.2 Recognition refinement 
 
In complex domains like C2CUT, it is almost impossible to 
collect complete information about the cues under concern 



all at a time. In such a situation, human decision makers 
typically consider cues gradually and refine their 
decisions progressively if necessary. For instance, when 
decision makers notice an anomaly as the situation 
evolves, they can adjust their recognition by considering 
more cues synthesized from the information that just 
becomes available.  
 
We address this issue by organizing the experiences in a 
decision space by refinement relations. We say an 
experience refines another if it considers more cues 
(information) than the latter. A stronger refinement relation 
can be defined in terms of additional relations between the 
other components of experiences, like expectancies, 
COAs. For instance, for some types of decisions, it may 
make sense to say that an experience is a refinement of 
another if it considers more information (cues) in the 
recognition, both share the same goals, and the course of 
actions associated with one experience is simply the prefix 
of what is associated with the other. From such a 
perspective, experiences in an EKB can be virtually viewed 
as being partitioned by some experience refinement 
relations. For the example illustrated in Figure 2, after 
experience e10 being considered, experience e23 can be 
selected in the next round of recognition as more 
information becomes available. However, to elicit a 
meaningful experience-refinement relation from a decision 
space is  domain-dependent, and the detailed discussion of 
it is out of the scope of this paper. 
 

 
 
An expected situation can reinforce current recognition, 
while an anomaly can weaken it. Figure 2 shows a 
structure of a decision space. Suppose e3 is the current 
recognition, a decision maker needs to pay attention to 
cues of e6 and e7 (for further recognition) and the 

expectancies or anomalies of e0 and e3 (for revising 
current recognition). The example shows that in a decision 
space, a decision-maker should pay attention to and 
collect (ask others or investigate by itself) information 
about cues of the lower-level experiences.  
 
In sum, by organizing experiences as decision spaces and 
modeling the information requirements as cues, anomalies, 
and expectancies, R-CAST agents can efficiently reason 
about time-sensitive information requirements for complex 
decision tasks. The algorithm for adaptive decision making 
can be found in (Fan, et al., 2005a). 
 
4. Assisting C2CUT Using R-CAST 
 
Let’s see how a small event like a group forming may 
cause a ripple effect on everything that is going on. 
Suppose a large group of locals starts to form in a section 
of a city. The situation needs to be monitored for the 
peace keeping forces because they may need to 
react. This same situation could also cause a problem for 
the humanitarian effort as well: the supply route may have 
to be altered to avoid the group. This same group could 
also cause a problem for the combat forces to capture the 
key person. The combat forces may have to delay their 
mission until the streets are clear of locals.  
 
It is thus very important to distribute the correct 
information to the staff officers and to create for them a 
situational awareness. In this project, we used R-CAST 
agents to assist human operators by monitoring multiple 
types  of situations and alerting human whenever critical 
situations occur. Our scenario involves three battle 
functional areas (BFAs): the intelligence cell (S2), the 
operations cell (S3), and the logistics cell (S4), each is 
assisted by an R-CAST agent. Our discussion below 
centers on S2’s assistant agent (S2AA). Figure 3 
illustrates the roles S2AA plays in helping S2 human 
collect information and make decisions. 
 
S2AA first anticipates the information needs based on the 
incoming SPOT reports and the cues under its concern 
(i.e., captured in S2AA’s decision spaces). If necessary, it 
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Figure 2. Structure of Decision Spaces 
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also infers tacit information needs based on its expertise 
on inference knowledge. The agent then either asks other 
teammates (e.g., S2 human) or initiates a COA (e.g., 
launching an UAV) to collect the relevant information. 
Depending on the level of time stress, the more 
information S2AA collects, the better decision it can make. 
In the following, we only focus on decisions about 
information need analysis and information exchange rather 
than on decisions about course of physical actions.  
 
4.1 Peacekeeping Operation 
 
The goal of the peacekeeping operation is to keep the 
tribes from confrontation. SPOT reports will be generated 
about any crowd growing larger than some threshold 
levels or appearance of key persons in those crowds in the 
areas being patrolled. To alleviate S2 suite human’s work 
load and cognitive load, R-CAST agent is used to assist 
S2 human by processing the incoming SPOT reports and 
making timely decisions on whether and how to alert S2 
human regarding the identified threats based on the 
relevant experiences. Here is an experience of S2AA: 

 

If the crowd size is so large that a reinforcement call is 
required to be warranted to avert confrontation, the 
assistant agent will alert the S2 human. With approval 
from S2 human, the assistant agent will inform the combat 
officers about the situation. Then the combat officers can 
make a decision of ordering a troop in response. If the 
crowd size is not so large but there is a key person spotted 
in that crowd, the assistant agent queries the MIDB to 
seek information about the latest update of the person’s 
threat level. If the threat is high enough, the assistant 
agent will alert the combat officers to consider launching a 
capture mission. 
 
Below is a sample session of agent-human interaction in 
the peacekeeping context: 
 

 
 
1. S2AA receives a SPOT report containing the 

following information: 
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Figure 4. Interaction pattern for peacekeeping 
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• (Size Group1 15),  
• (Has_key_person Group1 AdMir_Erry), and 
• (Location Group1 30 60); 

2. S2AA sends a query to MIDB Agent: 
• (threat_level AdMir_Erry ?level); 

3. S2AA gets a reply from MIDB Agent: 
• (threat_level AdMir_Erry high); 

4. S2AA interprets current situation and concludes that 
the threat from Group1 is high, so it displays an icon 
on S2’s workspace map, and pops up an alert window 
with all the information about Group1 to S2 human; 

5. S2 human confirms the alert (with additional 
information, if necessary) to the S2AA; 

6. S2AA publishes the icon on the general map;  
7. S2AA alerts S3 human via S3’s assistant agent (which 

displays an icon on S3’s workspace map). 
 
Figure 4 illustrates this interaction pattern. Figure 5 is a 
screen shot of S2’s workspace map. 
 
4.2 Combat Operation 
 
A combat operation involves capturing or killing a key 
insurgent. Once a key insurgent has been spotted in a 
building, the combat officers (S3) need all the information 
about the building itself and its surrounding areas. Thus, 
as soon as S2AA receives a SPOT report containing 
information about a key insurgent, it will alert the combat 
officer about the presence of a key insurgent. In addition, 
S2AA executes a plan for gathering all related information 
about the insurgent and the area that the insurgent was 
spotted in. More specifically, S2AA will query the MIDB 
and gathers more information about the insurgent, terrain 
information and floor plans of the building, if any, then 
proactively share such information with S3AA, which 
presents the information to S3 human along with an icon 
on the map displaying the location of the key insurgent. 
 
Below is a sample session of agent-human interaction in 
the combat context: 
 
1. Spot Report comes in to S2AA: 

• (key_insurgent Laden), 
• (in_building Laden house1 32.36 -84.84); 

2. S2AA alerts S3 (through S3AA, which displays an 
icon on S3’s workspace map); 

3. S2AA searches its knowledge base about the activity 
information about Laden; 

4. S2AA queries the MIDB agent about the profile 
information of Laden; 

5. S2AA queries the GIS agent about relevant terrain 
information; 

6. S2AA displays an icon on S2’s workspace map, and 
on the general map if S2 approves; 

7. S2AA forwards all the acquired information to S3AA, 
which updates the icon on S3’s workspace map. 

 

 
 
4.3 Humanitarian Operation 
 
The humanitarian operation focuses on monitoring routes 
that supply food and hospital materials throughout the 
city. If a threat is detected or expected, the route needs to 
be changed or escorted by forces. 
 

 
 
The route information is fed to S2’s assistant agent 
(S2AA) for monitoring. S2AA then investigates the route, 
identifies potential threat areas, and informs the human 
user, if any. Threat can be either from an IED (Improvised 
Explosive Device) or from a hostile group. The decision 
space for the humanitarian operation consists of 
experiences that deal with different types of situations 
such as spotting an IED or spotting a hostile group along 
a route, and S2AA needs to decide whether to alert S4 
with hostile information in an area. 
 
Below is a sample session of agent-human interaction in 
the combat context: 
1. S2AA gets updated information about supply routes; 
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Figure 6. Interaction pattern for combat 
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2. S2AA receives a SPOT report about an IED: 
• (IED Bomb1), 
• (Location Bomb1 30 60); 

3. S2AA sends a query to MIDB agent; 
4. S2AA get replies from MIDB agent; 
5. S2AA assesses the situation and concludes that that 

the IED  has a threat to the route, so it displays an 
alert window with all the relevant information (IED 
name, location, time, etc.) on both the S2 and S4 
machines; 

6. In addition, an icon is published with all the relevant 
information on the general maps of S2 and S4. 

 
5. Comparison and Discussion  
 
Others have been investigating (a) computational 
approaches to RPD to represent human decision making 
for concept exploration, analysis, or evaluation (e.g., 
(Warwick, et al., 2002)); (b) the use of software agents for 
robust battlefield simulation (e.g., (Allen, et al., 2004)); (c) 
the use of agents as aids to information filtering in a 
decision environment (e.g., (Knoblock and Ambite, 1997; 
Turner, et al., 1997)); (d) shared situation awareness (e.g., 
(Endsley and Robertson, 2000)), cognitive models of 
situation awareness (e.g., (Gonzalez, et al., 2004)); and (e) 
teaming with automation (e.g., (Christofferson and 
Woods, 2002)). The collaborative-RPD model implemented 
in R-CAST is linked to but also distinguished from the 
existing work in important ways. First, R-CAST is the first 
RPD-enabled agent architecture designed for supporting 
teamwide collaborations (including human-agent and 
agent-agent collaborations). With collaboration in mind, 
we take an intensive view of the recognition phase of the 
RPD process and focus on the investigation of how 
proactive information exchange among teammates might 
affect the performance of a decision making team. Second, 
R-CAST agents can proactively reason across decision 
spaces, seek missing information from external intelligence 
sources, exchange relevant information among teammates, 
and monitor an on-going decision against potential 
expectancy. Third, the “cognitively-aware” agents, as 
teammates or decision aids, each assigned to a specific 
functional area, can be used to assist human teams (e.g., 
military staff) in developing shared situation awareness 
while balancing information requirements against the 
dynamic and time sensitive decision making process. 
 
Case-based reasoning (CBR) is another psychological 
theory of human cognition (Slade, 1991), focusing on the 
process of reminding (experience-guided reasoning) and 
learning. While there is no clear line between RPD and 
CBR as far as their process models are concerned (e.g., 
both cover experience retrieval, solution adaptation and 

evaluation), they differ in several important aspects. First, 
RPD originates from studies about how human experts 
make decisions under time pressure (Klein, 1997; 1998). 
Experiences in RPD are prior decision making cases, while 
experiences in CBR can be of any kind. From such a 
perspective, RPD can be taken as a subfield of CBR. 
Second, while storage and retrieval are central aspects of 
CBR, research on RPD is more concerned with the iterative 
process of recognition refinement (i.e., developing better 
situation awareness through information gathering). Third, 
RPD systems ought to be aware of time stress and make as 
better decisions as time permitted, but this is not a 
requirement on CBR systems. In addition, the 
Collaborative-RPD model implemented in R-CAST takes a 
more extensive view, focusing not only on human-
centered teamwork in making decisions, but also seriously 
addressing related issues such as collaborative situation 
awareness and expectancy monitoring. 
 
It may be argued that the RPD model does not work ab 
initio; it works on a body of expertise acquired through 
length engagement in a domain of practice. Then, one 
critical question is how R-CAST deals with experience 
acquisition. To answer this question, one has to admit that 
experiences (cases) are quite different from rules, which 
are the basic unit of knowledge of traditional expert 
systems. Knowledge acquisition process becomes a 
bottleneck of rule-based expert systems, because 
oftentimes the rules articulated by human experts in fact 
did not accurately reflect their own problem-solving 
behavior (Slade, 1991). Psychological studies indicate that 
people remember their own experience and it is easier for 
them to articulate knowledge as experience than rules 
(Slade, 1991). This view favors case-based models and 
systems. Of course, experience acquisition in RPD is still a 
challenging task due to human factors. Our first pass at 
tackling this issue was to rely on Army in-house expertise 
to populate agents with experiences. In the long run, we 
will accommodate experience learning into R-CAST, 
drawing upon research in case-based reasoning (Aamodt 
and Plaza, 1994). We are also planning to develop a tool to 
facilitate the KA process for RCAST. 
 
Another interesting question is how time stress is 
understood by agents . For the purpose of explanation, we 
simplify the decision process of an R-CAST agent as a 
sequence (Information-gathering)--(Feature-matching)--
(Similarity-evaluation)--(Expectancy-monitoring)--(COA- 
adjustment), where each step can cycle back to the 
beginning of the sequence. Among the steps, we can 
assume the algorithms for Feature-matching and Similarity-
evaluation take fixed times (of course, it depends on the 
size of the experience base and the similarity metrics), and 
obtain their approximates (Tf, Ts) empirically. Information-



gathering, Expectancy-monitoring, and COA-adjustment 
are anytime algorithms: the more time spent, the better 
solution obtained. Let T (e.g., 3 minutes from now) be the 
time constraint associated with the current decision task 
(T can be figured out dynamically by a human and input to 
the partner R-CAST agent, or an empirical value preset for 
a type of decision tasks). Then, an R-CAST agent has to 
allocate the time (T-Tf-Ts) to the activities of Information-
gathering, Expectancy-monitoring, and COA-adjustment 
appropriately. The strategy currently used is to favor the 
information gathering activity, say, 60% of (T-Tf-Ts) is 
used for collecting missing information that is critical in 
cue synthesis.  Expectancy-monitoring is a parallel 
process. Whenever an anomaly occurs and the decision 
process needs to restart, the remaining time will be re-
allocated to the activities, and the process continues until 
either a workable solution is found or time out.  
 
Previously (Fan, et al., 2005a), we conducted experiments 
in DDD environment to evaluate the adaptive decision 
making feature of R-CAST agents . While the experimental 
result reinforced the psychological findings that people 
are extremely sensitive to time pressure, it also indicated 
that as a cognitive aid, R-CAST agents can alleviate 
human’s stress caused by time pressure. In this paper, via 
case study, we demonstrated that R-CAST agents can 
help collect and share relevant information in the C2CUT 
domain. This is our first step, however. One of our on-
going efforts is to conduct experiments using the C2CUT 
scenario to understand how R-CAST agents can help 
people switch their attentions between multiple contexts 
and evaluate their performance gains. 
 
6. Summary 
 
One of the challenging issues in the domain of C2CUT is 
how to assist human combat staff to effectively 
collaborate and make decisions under multiple contexts. 
The goal of peace keeping is to monitor the streets of a 
city; this requires timely intelligence information in order 
to stop problems before they happen. The goal of 
humanitarian is to safely provide supplies to a local 
hospital, which needs a clear route to deliver supplies. The 
goal of combat is to capture a key person in a section of a 
city. Each mission can have an affect on the other. The 
ability of staff officers to monitor these situations and 
react in a timely manner is the key to success. 
 
In this paper, we described a novel approach that uses 
RPD-enabled agents to support timely decision-making 
under multiple contexts. The R-CAST architecture has 
implemented a built-in Recognition-Primed Decision 
model, leveraging both agent-agent collaborations and 

agent-human collaborations during the decision-making 
process. R-CAST agents can proactively reason across 
decision spaces, seek missing information from external 
sources, exchange relevant information among teammates, 
and monitor an on-going decision against potential 
expectancy. It can be used to develop systems for 
enhancing the capabilities of anti-terrorist analysts in early 
detection of potential terrorist threats. R-CAST supports 
adjustable autonomy , as well. R-CAST agents can 
collaborate with human partners to monitor expectancies 
and progressively refine recognitions. 
 
Currently, each R-CAST agent can only work on one type 
of decisions at a time. Particularly in the C2CUT scenario, 
the S2 human is assisted by three R-CAST agents which 
are in charge of peacekeeping, combat, and humanitarian 
situations, respectively. There are no tight connections 
among the three R-CAST agents. It would be better if an 
R-CAST agent can concurrently monitor multiple decision 
processes so that different views of the current situation 
can be better connected and human’s attentions can be 
better adjusted. For the future work, as well as extending 
the existing decision adaptation mechanism by developing 
tools for supporting experience learning from people, one 
on-going investigation is to empower R-CAST agents with 
the capability of helping human operators switch contexts 
(attentions), and to conduct experiments to evaluate the 
performance gains of human teams when they are assisted 
by attention-monitoring R-CAST agents in dynamic, 
complex domains like C2CUT. The final system is aimed to 
allow experimentation and demonstration of advanced 
tactical information exchange, reduced cognitive load, 
enhanced situation awareness, and positive human-agent 
collaboration. 
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