
To appear in the procdeedings of 2004 IEEE International Conference on Web Services, July, 2004, San Diego

Team-based Agents for Proactive Failure Handling
in Dynamic Composition of Web Services

Xiaocong Fan, Karthikeyan Umapathy, John Yen, and Sandeep Purao
School of Information Sciences and Technology

Penn State University
University Park, PA 16802

ABSTRACT

Currently web services composition problems are addressed
using AI planning techniques . The team-based approach,
with emphases on the sharing of mental models and
proactive collaboration, provides an alternative to current
static approaches to web service composition. The approach
provides clear advantages for proactive handling of failures
that may be encountered during execution of a complex
web service. The paper proposes a generic framework for
dynamic web-service composition, and extends the CAST
architecture to realize the framework.

Keywords
Dynamic Web Service Composition, Failure Handling,
Intelligent Agents, Proactive Monitoring, CAST Agents

INTRODUCTION
The web services composition problem has been recognized
to include both the coordination of sequence of services
execution and also managing the execution of services as a
unit [Pires 2002]. Monitoring of the execution and
exception handling for the web services must, therefore, be
part of an effective strategy for web service composition
[Oberleitner 2003]. However, much current work in web
service composition continues to focus on services
discovery and the services planning stage. We argue that
work from research in team-based agents can be leveraged
to bridge this gap between planning and execution of web
service composition.

The objective of this paper is to investigate how a team-
based agent architecture—CAST, can be used for
integrating planning, execution and monitoring of
composite web services with a view to proactively dealing
with failure handling. A successful approach in this
direction can provide new ideas for responding proactively
to changes in the environment or capabilities of web
services at runtime so that the execution can be better
monitored to achieve better QoS (quality of service).

CAST (Collaborative Agents for Simulating Teamwork)
[Yen 2001] offers a suitable alternative for dynamic web
services composition because of two properties they
exhibit. First, CAST agents are designed to work
collaboratively in a changing environment using a shared
mental model of the environment. Second, CAST agents are
designed to proactively inform each other of changes in the
environment that they perceive to handle any exceptions

that arise in achieving a team goal. By collaboratively
monitoring the progress of a shared process, a team of
CAST agents can not only initiate helping behaviors
proactively but also can adjust their own behaviors
appropriately to the dynamically changing environment.

In this paper, building on the CAST model [Yen 2001], we
first propose a generic team-based agent framework for
dynamic web-service composition; and then extend the
existing CAST architecture to realize the framework.

COMPOSING WITH TEAM-BASED AGENTS
The framework we propose distributes the web service
composition task – planning and execution – to a team of
agents. We first describe the capabilities of team-based
agents, followed by how they form and collaborate in teams
to achieve dynamic web service composition.

Team-based agents
A team-based agent A is defined in terms of (a) a set of
capabilities (service names), denoted as CA, (b) a list of
service providers SP under its management, and (c) an
acquaintance model MA (a set of agents known to A, and
their respective capabilities: MA={<i,C i>}).

The agents, thus, play multiple roles. First, as a service
manager agent, an agent A knows which providers in SP
can offer a service S (S∈CA), or at least knows how to find a
provider for S (e.g. by searching the UDDI registry) if none
of the providers in SP are capable of performing the
service. Services in CA are primitive to agent A in the sense
that it can directly delegate the services to appropriate
service providers. Second, as a composer agent , an agent is
expected to compose a process using the known services to
honor a user’s request that falls beyond its capabilities, that
is, for “abstract services.”

The set of acquaintances, MA, thus, forms a community of
contacts available to an agent. This additional, local
knowledge supplements the global knowledge about
publicly advertised web services (say, on the UDDI
registry). The acquaintance model is dynamically modified
based on the agent’s collaboration with other agents (e.g.,
assigning credit to those with successful collaborations).

Responding to request for a complex service
An agent, upon agreeing to honor a complex service
request, initiates a team formation process:

To appear in the procdeedings of 2004 IEEE International Conference on Web Services, July, 2004, San Diego

(1) Upon receiving a request for service S (with, say,
constraints on service quality), an agent (say, C) adopts
“offering service S” as its persistent goal (see figure 1).
(2) If S∈CC (i.e., S is within its capabilities), agent C simply
delegates S to a competent provider (or first finds a service
provider, if no provider known to C is competent).
(3) If S∉CC (i.e., agent C cannot directly serve S), then C
tries to compose a process (say, P) using its expertise and

the services in
, i C

C i
i C M

C C
< >∈

∪∪ (i.e., it considers its

own capabilities and the capabilities of those agents in its
acquaintance model), then starts to form a team:

(i) Agent C identifies teammates by examining agents
in its acquaintance model who have the capability
to contribute to the process, i.e. A∈MC, and
SP∩CA≠φ, where SP is the set of services used in
process P.

(ii) Agent C chooses willing and competent agents
from MC (e.g., using contract-net protocol [Smith
1980]) as teammates, and shares the process P
with them with a view to working together as a
team jointly working on P.

(4) If the previous step fails, then agent C either fails in
honoring the external request (is penalized), or, if possible,
may proactively discover a different agent (either using MA
or a using UDDI) and delegate S to it.

C

query
S5S1

S2

S3

S4

compose
high-level
process

T4

S1

recruit teammates

T1

S2 S1

T2
T3

S33

S32

S4

S3

S5

S9S6
S7

S8

S3

S6

Figure 1: Dynamic Team Formation

Executing a complex service
Following the formation of the team the collaborating
agents can, then, play a proactive role in executing a
complex service. The collaborative monitoring of the
shared high-level process will result in several kinds of
proactive collaboration from each agent (see Figure 2).

Proactive Service Discovery. Let’s consider a team agent
T2 is responsible for contributing service S5. If the service
S5 ceases to be available before the scheduled execution, T2
will proactively attempt to discover a new provider for
service S5.

Proactive Service Delegation. Suppose agent C chooses S3
as the successive of S1, and S3 itself is a complex service
for T3, who composes a process for S3 as shown in Fig. 2.
Even though T3 can perform S6, S7-S9 are beyond its
capability; it has to form another team and delegate the
services to the recruited agents (i.e., T6). It might be argued
that agent C would have generated a high-level process
with more detailed decomposition, say, the sub-process

generated by T3 were embedded (in the place of S3) as a
part of the high-level process. If so, agent T6 would have
been recruited as C’s teammate, and no delegation would be
needed. However, the ability to derive a process at all
decomposition levels is too stringent a requirement to place
on any single agent because it will lack knowledge that may
be available to its teammates.

Proactive Information Delivery. Proactive information
delivery occurs in the following situations. (i) There are
critical choice points where several branches are specified,
but which one will be selected depends on the known state
of the external environment. Thus, teammates will
proactively inform the team leader about those changes in
states that are relevant to its decision-making. (ii) Upon
making a decision, other teammates will be informed of the
decision for them to better anticipate collaboration needs.
(iii) A web service may fail due to many reasons. The
responsible agent should proactively report the failure of
services to the leader so that the leader can decide how to
respond to the failure: choose an alternative branch or
request the responsible agent to re-attempt the service from
another provider.

S5S1

S2

S3

S4

S1

T1

S2

S1

T2

T3

S4

S3

S5

C
Services
Discovery

S6

T6

S7

S9

S8

S9S6
S7

S8

S3

Services Delegation

Service Selection

Figure 2: Proactive Collaboration

THE CAST-WS ARCHITECTURE
We have designed a team-based agent architecture CAST-
WS (Collaborative Agents for Simulating Teamwork
among Web Services) to realize our framework (see Figure
3). In this figure, the bottom box refers to Web service
layer, and the top box depicts the detailed composition of
CAST-WS, where the implemented team-based agent
architecture (i.e. CAST) is extended with the WS-Planning
and the WS-Execution parts for application to web service
composition. In the following, we describe components of
the architecture and explain their relationships.

The WS-Planning Component
The Planning component is responsible for composing
services and forming teams. This component includes a
service planner, a service discovery module, a team
formation module, and an acquaintance model. Service
discovery module is used by service planner to lookup in
UDDI registry for required services. Team formation
module, together with acquaintance model, is used to find
team agents who can support the required services. A web
service composition starts from user’s request. The agent
who gets the request is the composer agent who is in charge
of fulfilling the request. Upon receiving a request, the

To appear in the procdeedings of 2004 IEEE International Conference on Web Services, July, 2004, San Diego

composer agent turns the request into its persistent goal and
invokes its service planner module to generate a business
process for it. CAST agents use PrT nets to represent and
monitor a business process.

The Team Coordination Component
A service manager agent uses the team coordination
component to coordinate with other agents and execute the
services. This component includes an inference engine with
a built-in knowledge base, a process (in Petri-nets) shared
by all team members, a PrT interpreter, a plan adjustor, and
an inter-agent coordination module. Knowledge base holds
the (accumulated) expertise needed for service composition.
The inter-agent coordination module, embedded with team
coordination strategies and conversation policies
[Umapathy 2003], is used for behavior collaboration among
teammates. Here we mainly focus on the process intepreter
and the plan adaptor.

Each agent in a team uses its PrT net interpreter to interpret
the business process generated by its service planner,
monitor the progress of the shared process and takes its turn
to perform those tasks dynamically assigned to it. If the
assigned task is a web service, the agent invokes the service
through its BPEL4WS process controller. If a task is
assigned to more than one agent, the responsible agents
need to coordinate their behavior (e.g., not compete for
common resources) through the inter-agent coordination
module. If an agent faces an unassigned task, it evaluates
constrains associated with the task and tries to find a
competent teammate for the task. If the assigned task is an
abstract service (i.e. further decomposition required) and is
beyond its capabilities, the agent treats it as an internal
request, start composing a sub-process for the task and form
another team to solve it.

The plan adjustor uses the knowledge base and inference
engine to adjust and repair the process whenever an
exception or a need for change in the process arises. The
algorithm used by the plan adjustor utilizes the failure
handling policy implemented in CAST. Due to the
hierarchical organization of the team process, each CAST
agent maintains a stack of active process and sub-processes.

A sub-process returns the control to its parent process when
its execution is completed. Failure handling is interleaved
with (abstract) service executing: execute a service; check
termination conditions; handle failures, and propagate
failures to the parent process if needed. The algorithm
captures four kinds of termination modes resulting from a
service execution. The first results when the service is
completed successfully. The second indicates that the
process is terminated abnormally but the expected effects
from the service has already been achieved “magically”
(e.g. by proactive help from teammates). The third indicates
that the process is not completed and is likely at an impasse.
In this case, if the current service is just one alternative of a
choice point, another alternative can be selected to re-
attempt the service. Otherwise, the failure is propagated to
the upper level. The fourth indicates that the process is
terminated because the service has become irrelevant. This
may happen if the goal or context changes. In this case, the
irrelevance is propagated to the parent service, which
checks its own relevance.

The WS-Execution Component
A service manager agent executes the primitive services (or
a process of primitive services) through the WS-Execution
component. The WS-Execution component consists of a
commitment manager, a capability manager, a BPEL4WS
process controller, an active process, and a failure detector.
The capability manager maps services to known service
providers. The commitment manager is used to schedule the
services assigned to it in an appripriate order.

An agent ultimately needs to delegate those contracted
services to appropriate service providers. The process
controller generates a BPEL4WS process based on the
WSDL of the selected service providers and the sequence
indicated in the PrT process. The failure detector identifies
execution failure by checking the termination conditions
associated with services. If a termination condition has been
reached, the failure detector throws an error and the plan
adjustor module is invoked. If it’s a service failure, the
plan adjustor simply asks the agent to choose another
service provider and re-attempt the service; if it’s a process

Team Formation

Services Planner Process
(PrT Nets)

Process
(BPEL4WS)

PrT Interpreter

Capability

Service
Discovery

Knowledge Base &
Inference Engine

Plan Adjustor

Acquaintance
Model

Service Providers

WDSLUDDI

Commit to
Assigned Services

Requests

Web Service Layer

To CAST Agents

Inter-agent
Coordination

To teammates

Users

CAST Agent

Failure
Detector

WS-Planning Team Coordination WS-Execution

BPEL4WS
process controller

Figure 3: The Architecture of CAST-WS

To appear in the procdeedings of 2004 IEEE International Conference on Web Services, July, 2004, San Diego

failure (the unexpected changes make the process
unworkable), the plan adjustor has to back-tracks the PrT
process, tries to find another (sub-)process that would
satisfy the task, and uses it to fix the one that failed.

DISCUSSION
The approach and architecture we have outlined has, at the
core, a key element that distinguishes our efforts from many
current efforts for web service composition. Instead of
centralizing the process of web service composition, we
have proposed to push the burden to the participants, the
individual web services. A consequence of this shift in
focus is that our approach allows us to interleave execution
with planning. The framework and architecture we have
outlined exhibits the following features, which provide
distinct advantage over current web service composition
approaches.

First, it supports an adaptive process suitable for the highly
dynamic and distributed manner in which web services are
deployed and used. With a clearly specified and shared joint
goal, each agent commits to informing the team leader of
any changes it may detect in the environment. Using this
input, the composer agent is then able to make appropriate
decisions at critical choice points. For example, an agent
may proactively report an imminent service failure to the
composer agent, who can decide on the appropriate
response to the failure in a timely manner.

Second, it elicits a hierarchical methodology for process
management. A complex process typically consists of
several levels. A composer agent may not be able to
decompose such a process to map its components to
primitive services, either due to lack of knowledge or
capability. Our framework allows a service composer to
compose a process at a coarse level appropriate to its
capability and knowledge, leaving further decomposition to
competent teammates.

Third, it encourages separation of concern. Following the
hierarchical management of the process, all agents share the
tasks of composer agent e.g. execution, monitoring, and
failure handling. For instance, to perform the service
delegated by the leader, an agent may compose a lower-
level process for it. The leader need not pay attention to the
choice points, if there are any, in such a lower-level
process; and may not even need to know the existence of
these lower-level choice points. The team’s distributed
knowledge and specialized capabilities can thus be
leveraged to offer better QoS.

Fourth, planning is interleaved with plan execution.
Following this framework, an agent can act on a partial
process (i.e., with some abstract services not being
decomposed yet). For instance, while service S1 is being
executed by some service provider (delegated by T1), agent
T3 may still be deliberating on how to generate a process
for service S2. Interleaving planning with plan execution

can reduce the execution time, thereby improving overall
efficiency of the system.

Our work in this direction has provided us with the
fundamental insight that further progress in effective and
efficient web service composition can be made by better
understanding how distributed and partial knowledge about
the availability and capabilities of web services, and the
environment in which they are expected to operate, can be
shared among the team of web services the must collaborate
to perform the composed web service.

Interestingly, the pitfalls we anticipate in pursuing further
work in this direction also stem from such distributed and
partial knowledge. With the expectation that a large number
of web services may be deployed and available on the web,
which may be geographically dispersed, have different
reliability quotients and may lead to unanticipated failures,
a team-based model that requires proactive sharing of
knowledge may be problematic. We expect that techniques
from transaction management in distributed database
settings may be useful in this regard.

Our planned work involves refining the architecture to
clarify linkages to the underlying web-service technology
stack, and developing mappings to these layers – with a
view to implementing the CAST-WS architecture.

REFERENCES
1. Allen, Rob (2001). "Workflow: An Introduction".

Workflow Management Coalition. Pg: 15-38.

2. Burg, Bernard (2001) "Agents in the World of Active
Web-Services". Digital Cities. Pg: 343-356.

3. Oberleitner, Johann and Dustdar, Schahram (2003).
"Workflow-Based Composition and Testing of
Combined e-services and Components". Technical
Report TUV-1841-2003-25, Vienna University of
Technology, Austria.

4. Pires, Paulo; Benevides, Mario; and Mattoso, Marta
(2002). "Building Reliable Web Services
Compositions". Web, Web-Services, and Database
Systems.

5. Smith, Reid G. (1980). “The contract net protocol:
High-level communication and control in a distributed
problem solver”. IEEE Transactions on Computers, Vol:
29(12). Pg: 1104-1113.

6. Umapathy, Karthikeyan; Purao, Sandeep and
Sugumaran, Vijayan (2003). “Facilitating Conversations
among Web Services as Speech-act based Discourses”.
In Proceedings of the Workshop on Information
Technologies and Systems (WITS 2003). Pg: 85-90.

7. Yen, John; Yin, Jianwen, Ioerger and et. al. (2001).
"CAST: Collaborative Agents for Simulating
Teamwork". International Joint Conference on Artificial
Intelligence (IJCAI-01). Pg: 1135-1142.

