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1. Preface 
CAST (Collaborative Agents for Simulating Teamwork) is a teamwork agent architecture 
that enables building collaborative agents as teams. This manual gives a high level 
introduction on CAST architecture, how to use CAST, and how to program with CAST. 
Readers may refer to [1] for more information on it from a theoretical perspective. 
 
John Yen is the main architect for CAST. CAST version 1.0 was developed by Jianwen 
Yin. Michael S. Miller has developed the CAST version 2.0 that is currently used. 
Thomas R. Ioerger has coded JARE. At the Penn State University, CAST has been future 
extended on the basis of version 2.0 and different domain scenarios have been 
implemented and tested with CAST agents. 
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2. Getting started 
System requirements 
CAST v2.0 is developed with Java; the only requirement is JDK1.3.1 (or J2SE v 1.3.1 
http://java.sun.com/j2se/1.3/). However, we recommend you install ant 
(http://ant.apache.org/), which will makes compiling and running easy. 
 
Installation 
When the package is unzipped, it will automatically create and copy the required files in 
the directory in which it was unzipped. You need to start the dTank simulator, an 
example domain, (under dTank-2.0.8a) before running the test. A dTank manual is 
available at http://acs.ist.psu.edu/dTank/. 
 
Compiling 
Use the ANT build.xml file in the cast3/src directory. In this file there are a number of 
targets for both compiling and executing the CAST software. If ANT is set up then typing 
“ant-projecthelp’ returns the following entries.  
Buildfile: build.xml 
Main targets: 

• Build  Builds jar file 
• Cast-all  Runs CAST with example XML file 
• Clean  Removes all classes and jar files 
• Docs  Creates Java docs 

Default target: build 
 
Running 
There are the targets that can be executed using ANT. ANT can both compile and execute 
cast3. Typing ‘ant’ with no arguments will compile the code. CAST has an XML parser 
that it uses to parse a configuration file. This reduces the amount of setup needed as a 
user can simply use the XML file to specify what agents will be started and their 
attributes along with a few CAST system attributes.  
To Run CAST agents: 
If you have installed ant: 
 Type “ant jtankstart” under the sub-folder “Cast” 
If you do not have ant installed: 
 Type  run_jtank or 
 Type java -classpath ..\lib\lib-cast.jar;..\classes -Djava.security.policy=cast.policy 
cast3.monitor.CastMonitor config\jTank\jTank.xml 
cast3.domain.JTankWorld.JTankAgentStarter under the sub-folder “run” 
 
Testing 
After you run the CAST agents in the agent monitor, you may click the button "unpause 
all" to run them.  
 
Configuration 
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Under run folder, there are three sub-folders: config, images and teamplans. Config 
folder consists of the configuration files of the team, which are saved in XML files.  
Images folder consists of the images for displaying the world simulator. Teamplans 
folder consists of the plans of the team, which are saved as MALLET files. Cast agents 
are configured with an XML file e.g. “config\jTank\jTank.xml”, which contains the 
configuration of the team of the agents. For every agent, we should explicitly indicate at 
least the NAME, DOMAIN, MALLET, MONITOR, KBTYPE, WORLD_HOST, and 
WORLD_HOST_PORT.  
 
MALLET Plan 
In the example tank scenario, the procedural knowledge contains a two-phase plan: 
search and attack. Initially, a team wanders around and searches for enemy tanks. Once 
the team finds an enemy, the team-members communicate to inform each other of the 
enemy location and to cooperate for attack. Next, the team attacks the target together 
until the target is destroyed. Such a process iterates until all the enemies have been 
destroyed. Declarative domain knowledge includes moving directions, stone locations, 
and so on. 
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3. About CAST 

3.1. Overview 
CAST is a teamwork architecture that enables building collaborative agents as teams. The 
agents can monitor the progress of team activities, synchronize their behaviors, and, more 
importantly, anticipate the needs of their teammates. CAST uses a high-level language 
called MALLET (a Multi-Agent Logic-based Language for Encoding Teamwork) to 
capture teamwork knowledge flexible enough for the team to adapt to a dynamic 
environment and efficient enough for the team to coordinate and assist with limited 
communications. In addition, each agent uses novel algorithms to (1) dynamically assign 
tasks to member of the team, and (2) to anticipate information needs of teammates based 
on the shared knowledge.   

3.2. Main features 
The central aspect to our architecture is the maintenance of a Shared Mental Model 
(SMM) among the agents.  The SMM of a CAST agent has three components.  First, 
team structure and team process knowledge is described in MALLET.  The structure 
knowledge describes roles in the team, agents in the team, and the role each agent can 
play.  The process knowledge describes what the team is planning to do and a plan of 
how the team is to accomplish its goals.  All agents have a copy of these plans, and hence 
know what is to be done.  Second, a MALLET parser compiles the teamwork knowledge 
into a PrT Net representation, which is an internal representation of the agent’s SMM 
about the status of the team’s process.  PrT nets as a high-level formalism are more 
expressive than traditional PrT nets (i.e. place/transitions nets) [2].  
 
The third component of the agent’s SMM is a knowledge base that reasons about the 
agent’s belief regarding the world and the structure of the team.  This knowledge base 
also contains domain knowledge of the agents.   The knowledge base of an agent is 
initialized by facts and domain knowledge known to the agent.  However, it is 
continuously updated by sensor inputs and communication messages received by the 
agent.   Therefore, even if a team of agents starts with the same knowledge base, they will 
evolve into different (but overlapping) ones as they sense different information from the 
environment and receive different messages from teammates.   

3.3. CAST architecture 
The CAST framework is designed to model well-structured agent teams and to be able to 
adapt to dynamic environments. There are five major integrated components in the CAST 
architecture to support these objectives: teamwork knowledge specification, coordinated 
plan execution, world model, communication, and domain adapter. The teamwork 
knowledge specification allows agent designers to use MALLET to design team 
structures and team process of the team. At the same time, domain knowledge is captured 
in the agent’s world model.   The coordinated plan execution module makes action 
decisions and communication decisions. The CAST agents operate in a distributed 
fashion and they use JAVA Remote Method Invocation (RMI) for communication. Each 
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agent interacts with domain through a domain adapter, which integrates the four other 
components and makes CAST agents adaptive to different domains. An overview of the 
CAST agent architecture is shown in Figure 1. 
 

 
 

Figure 1: The CAST agent architecture. 

Teamwork knowledge representation 
Agent designers can use the team specification language MALLET to define team 
structures and team plans. MALLET supports most of the crucial elements of defining a 
team’s organizational structure such as members of the team, roles and responsibilities, 
capabilities of agents, sub-teams, etc. Team structure information, once loaded into the 
agent knowledge base, becomes team members’ shared mental knowledge about the 
team, which is important to help team-agents to reason about their teammates for task 
allocation and proactive communications.  
 
The main function of MALLET is to represent teamwork knowledge (plans) for a team. 
The plans are organized in hierarchical structures such that each plan consists of one or 
several steps, which are either sub-plans or atomic operators.  Those steps are controlled 
by different types of processes, which are specified as sequential, parallel, selective, 
iterative, or conditional. The whole team plan is converted into a PrT net, a process 
network which controls the execution of the team plan. Pre-conditions and post-
conditions are defined for each of the sub-plans and operators. Pre-conditions specify the 
resource and information required for carrying out certain tasks or operations. For 
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example, it is a pre-condition that an attack plan requires the target location before an 
agent can carry out the task.  The effect of the task is regarded as a post-condition, which, 
in this example, might be that the target is destroyed. Later, we will explain how the pre-
condition information is used for the agent to infer about information need of other 
teammates. 
 
In addition to team design, domain knowledge is also coded and loaded to the agent 
knowledge base. Domain knowledge includes both facts about domain and inference 
rules as Horn-clauses, with which agents can use to make decisions or to check the pre-
conditions of tasks in the PrT net.  
 
The team structure and team plans in MALLET, and coded domain knowledge will be 
parsed into a collection of PrT nets and an agent knowledge base. Both the process and 
knowledge about team and domain are important mental states that are shared among the 
whole team. Based on these shared mental states, agents can anticipate the needs of other 
team members and demonstrate strong intelligent team assistance behaviors.  

JARE  
JARE (Java Automated Reasoning Engine) is a back-chaining theorem-prover for making 
inferences using knowledge that is written in the form of a separate Horn-clause 
knowledge base, which stores agents’ beliefs. Initially, an agent has domain knowledge 
and belief about the team. After the agent is launched in the domain environment, the 
knowledge base is updated dynamically by newly acquired information through agents’ 
observations and communications. Post-conditions can also update the agents’ knowledge 
base with the effect of actions that were just carried out. Furthermore, an agent can 
update its own beliefs after making certain decisions. JARE is mainly used to determine 
the truth-value of conditions or constraints that need to be evaluated in interpreting 
MALLET expressions at run-time. JARE is also used to bind variables through queries 
for plan instantiation, conditional execution, and making communication decisions.  

CAST kernel 
The kernel of CAST architecture includes a set of integrated algorithms (goal selection, 
dynamic task allocation, communication decision).  It also controls the agent sensing, 
decision making, and action operation processes. 

Dynamic agent assignment 
During the execution process, agents select tasks to execute according to the PrT net and 
the beliefs about the team and domain.  If the selected task is a sub-plan, the agent will 
set it as the current task that the team needs to accomplish. At the same time, the agent 
will try to coordinate with other agents who are also assigned to this task. The plan is 
represented in a PrT net that is generated from MALLET.  
 
The algorithm for task allocation in CAST is called dynamic agent assignment (DAA). 
DAA first determines the current goal and finds an associated plan using the goal 
selection process.  Each plan, defined in MALLET, specifies the constraint conditions on 
how the tasks in this plan are allocated. Such conditions may include role constraints, 
workload conditions, or domain related conditions. Before executing a task, each agent 
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will check these constraints with its current beliefs about the domain or teammates and 
determine the suitable agents whose conditions satisfy the constraints. Agents’ workload 
status will also be considered during this process. The result of the DAA will determine 
which agents are going to do the task, and will play an important role in updating beliefs 
regarding information needs that agents use to provide information proactively for their 
teammates. 

Communication decision 
The algorithm used to infer information needs is called the Dynamic Inter-Agent Rule 
Generator (DIARG). DIARG is the most crucial part of CAST agent in terms of 
achieving the proactive assistance behavior in team environment. The foundation of 
DIARG algorithm has been established by extending the SharedPlan theory with the 
formal semantics of proactive communicative actions [3, 4].  We have shown that an 
agent’s consideration of proactive assist behaviors can be derived from axioms in the 
formal framework.  A team’s SMM about the information needs of its members is 
captured in the framework by a model operator InfoNeed (A, I, t, Cn), which represents 
that agent A needs information I at time t under the context Cn.  The arguments of these 
model operators correspond to attributes of the information need table, which serves as a 
computational SMM about information needs for a team of agents. 
 
DIARG has an off-line component and an on-line component.  The off-line component 
generates the information need table using teamwork knowledge specified in MALLET.  
The table contains information requirements (preconditions) for each task, and candidate 
agents who are potentially responsible for the task. When an agent is dynamically 
assigned to a task, the content of the table will be updated according to the result of 
DAA.  Using this table, agents can anticipate what information other agents might need. 
DIARG is built on top of the theory for proactive information exchanges [4], and is used 
to anticipate action performing information needs. 
The on-line component of DIARG monitors information newly sensed by an agent to 
determine whether it matches information needs of teammates.  If there is a match, the 
agent decides whether to proactively inform teammates.  Communications could 
introduce risks to the agent (e.g., that an enemy could intercept the communication and 
learn information potentially harmful to the team).  Therefore, agents should consider the 
risk as part of the communication cost in making their decisions on whether to 
proactively communicate with teammate or not.  

Domain adapter 
The domain adapter acts as an interface to the simulation environment.  Once agents 
make all of the decisions, they can carry out action operators. The CAST agent kernel 
does not define domain operators. A PrT net is executed at the abstracted operator level. 
The execution of the operators will invoke a set of separate domain operator definition 
class which is integrated with a domain adapter. The function of the domain adapter is to 
provide domain application layer communication such as API functions or messages. The 
domain adapters are implemented by dynamic class loading and can consist of arbitrary 
Java code.  The domain definition class and domain adapter make CAST architecture 
adaptable to not only different domains but also heterogeneous network environment. 
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Agent communication 
Like most multi-agent architectures, messages from CAST agents are encoded in KQML 
(Knowledge Query Manipulation Language) [5] format that defines both the content of 
the messages and performatives of the communication.  CAST currently supports two 
kinds of performatives: (1) information exchange performatives, and (2) coordination 
performatives.  Proactive delivery of information needed by teammates is realized using a 
novel performative called ProInform.  The semantics of ProInform extend that of Inform 
to include the needs of addressee in the mutual belief the speaker attempts to establish 
with the addressee.  The semantics of performatives have direct impact on the 
conversation policy between agents in a team.  For instance, a new type of reply can be 
introduced for ProInform such that the addressee can indicate that the information 
delivered is not needed or contrary to what the speaker believes.  We name the 
performative of this reply “RejectNeed”.  A more detailed discussion about the semantics 
of proactive communications among teammates can be found in [4].  
 
The second type of performatives is for agents to coordinate with each other regarding 
the execution of a team process.  For example, at the conclusion of a team operation, 
there will be communication by the performer(s) to let other members of the team (in 
some cases, not all members of a team need participate in a team action) know that the 
operation has been completed and it is permissible to proceed.  A future optimization 
could take observability into account and only inform teammates who were believed 
unable to observe the performance of the action.   
 
The actual agent communication is placed in a module outside the CAST kernel because 
the lowest level mechanisms used are domain dependent.  In our test simulation worlds, 
we have used JAVA RMI and socket level communications.  In a domain in which CAST 
is integrated into an operational setting, e.g., to provide assistance to live human 
operators, other forms of communications (e.g., voice, images, and video) might come 
into play, as well.  For purposes of this paper, we simply assume that the communication 
module provides reliable communication among team members when called upon to do 
so.  Most importantly, on the receiving end, it sends received information to a receiving 
agent within the Kernel that can interpret the information received and update the JARE 
knowledge base. 

Agent interaction with domain 
The domain or simulation environment is independent of CAST kernel. A typical domain 
contains its fact base and some policies. To interact with the domain, a CAST agent 
requires that domain environment periodically provide new “(sensing) information” and 
accept agent domain action commands. Each agent has its own instance of the CAST 
Kernel and domain adapter and interacts with the domain independent of the interaction 
of other agents with the domain.  
The CAST Kernel is designed to be domain independent so that CAST can be readily 
adapted to different domains.  In order to use CAST with a specific domain, one needs to 
do three things: 1) develop a domain specific adapter, 2) encode necessary domain 
knowledge in JARE rules, and 3) develop the teamwork plans, which will usually have 
domain specific aspects.  CAST provides a template which can be used as a basis for 
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developing the domain specific adapters.  Domain operations that agents can perform are 
specified in an interface, and the adapter must provide an implementation.  The 
operations used in MALLET programs must conform to the interface.  CAST then simply 
determines the operation names and parameter profile by parsing the MALLET plan and 
invokes the methods through the interface when it determines that an operation should be 
performed.  The interface also specifies methods by which domain information can be 
acquired to satisfy JARE queries. 

Execution 
An important issue for CAST kernel to address is to achieve desired coordination and 
synchronization in a distributed manner.  Synchronization for a team operator is 
established using the following conversation policy: 

1. Each agent involved in the team operator (i.e., an actor) sends a synchronization 
message to other actors of the operator when it is ready to perform the operator (i.e., 
after it evaluates the operator’s precondition successfully). 

2. After the number of synchronization messages received by an actor exceeds or equal 
to the minimum number of agents required to performing the operator (as specified 
by the num constraint of the team operator in MALLET), the actor performs the team 
action.   

Similar synchronization scheme is also used for agents to synchronize in invoking a team 
plan using JOINTDO.  This simple synchronization scheme does not consider 
communication delays.  Alternative synchronization scheme will be needed if agents 
need to synchronize in an environment that communication delays are not negligible. 
Distributed coordinations of a team plan are realized by “coordination messages” 
between members of the team.  Each coordination message contains an identifier that 
refers to a specific task (i.e., operator or subplan) in a team plan.  We describe the 
communication protocol for achieving coordination below. 

• If an agent is not an actor for the current task (i.e., operator of plan) in the team plan, the 
agent waits for coordination messages associated with the task from teammates. 

• If the agent is an actor for the current task, it starts performing the task, synchronize with 
teammates if needed.  

• When the agent finishes the task, it sends a “coordination message” (containing the 
identifier of the task) to all other teammates involved in the team plan. 

• When an agent waiting for a coordination message receives the message, it proceeds to 
the next step of the team plan. 

The parallel process in MALLET currently specifies parallel activities in a team, but not 
parallel activities for an agent.  Therefore, each agent can choose only one parallel branch 
to enter.  If an agent can enter multiple parallel branches, the current implementation of 
CAST randomly chooses one of these branches.  This selection scheme is simple, but 
does not address the issue of potential deadlocks.  For instance, suppose three agents A, 
B, and C enter a parallel process with three branches.  Suppose the first branch invokes a 
team plan that requires A and B, the second branch requires B and C, the third branch 
requires C.  Assuming agent A chooses the first branch, agent B chooses the second 
branch, and agent C chooses the third branch.  Only agent C will be able to proceed, 
while agent A and B each waits for another teammate indefinitely to execute their branch.  
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This problem can be addressed in the future in two ways: (1) by developing algorithms to 
detect potential deadlocks in a MALLET team plan specification and, (2) by improving 
the coordination among agents in choosing parallel branches. 
The CAST kernel includes a set of algorithms that CAST agents can use to determine the 
actions (including domain actions and communication actions) to be performed at each 
time step. Such algorithms include PrT net interpreter, DAA (dynamic agent assignment), 
DIARG (protell based on information flow table), decision-theoretic communication 
strategies. 
The PrT net interpreter is used for interpreting (manipulating) the PrT nets so that all the 
team agents cooperate their behavior to embody the specified team behavior. The internal 
PrT net representations of team processes are generated offline by MALLET Parser 
through compiling the team plans specified in MALLET. Initially, a team plan is only 
partially instantiated, though fully represented in the PrT net. As well as initiating 
appropriate communication actions at the appropriate time to evolve these partial plans 
(determine parameters such as the actual doers of certain actions), one of the tasks of 
NetIntepreter is to ensure all the team members to behave, react, and deliberate strictly 
according to the committed (intended) plans (courses of actions), and synchronize their 
behaviors whenever necessary. 
 
At each computation step, CAST agents sequentially execute three (mental) actions: sense-
decide-act.  During the sense phase, each individual agent queries the world simulation server to 
update its knowledge of the current state of the world, check its message queue and process the 
messages from other agents in this round.  During the decide phase, by using NetIntepreter, each 
agent examines the PrT net representation of the team plan to see if there are any pending actions 
for which it is responsible.  In cases of ambiguity about the actual doers of some pending actions, 
the agents might have to communicate in order to determine who will take the action, and 
synchronize their behavior if necessary. During the act phase, the kernel dynamically loads the 
class for the committed operation type, creates an instance of it, and invokes the operation. In 
addition, the kernel also applies the effects of the operation to its knowledge base, and if needed, 
proactively informs the new generated information to its teammates.  
More specifically, the kernel accomplishes the sense phase by invoking operations in the domain 
dependent library to obtain the needed information from the Domain Simulator.  The Domain 
Simulator determines which agent needs what information through analyzing relevant JARE rules 
and the specification of observabilities pre-defined in MALLET programs.  As the Domain 
Simulator updates itself (the actions executed by individual agents affect the world state), it 
notifies the appropriate Domain Adapter, which forwards the information to the corresponding 
kernels (agents), which then update their belief base (maintained by JARE Engine) to reflect the 
new acquired information (See Figure 1). 
The decide portion is an area which exposes promising research topics in CAST agent 
architecture.  Amongst the features that have been developed and tested thus far are: 

• Based upon the analysis of the MALLET programs, every CAST agent uses the DIARG 
algorithm (offline part) discussed earlier for determining agent- information needs 
relation and agent-information production relation, which are captured by its information-
flow table. 

• Upon acquiring new information (sensed from environment or derived from effects),  

1. Based on the common knowledge of observabilities (expressed in JARE), its 
information-flow table and other beliefs, an agent determines whether the 



 

13/37 

information needers among its teammates can get the same information by 
themselves (and hence the agent doesn’t need to inform them).  

2. When considering communication cost (risk), an agent will decide whether it 
should proactively inform the new acquired information to the needers by 
evaluating the utility of protell vs. not-protell. 

• When lacking of certain information, 

1. An agent can determine the potential information providers by checking its 
information-flow table. 

2. When considering communication cost (risk), an agent will decide whether it 
should proactively ask an information provider by evaluating the utility of ask vs. 
not-ask. 

• When executing along the shared PrT nets, 

1. By analyzing the currently active PrT nets, determine the actions within the team 
that are to be performed next (refer to algorithm 1). 

2. In the case of team operations or joint (AND/XOR/OR) operations, synchronize 
with teammates as necessary. 

3. Upon dynamic agent assignment, determine which agents will be dynamically 
assigned to some actions lacking pre-specified performers (this may involve 
coordinating with other agents). 

4. Determine whether or not this agent (each agent does such an analysis) is to 
perform the chosen friable next action.  

In short, during the decide phase, each agent determines what operation, if any, it should 
perform during its next cycle; performing, if necessary, dynamic agents assignment, and 
determines what communication should take place with which other teammates. 
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4. MALLET 
MALLET (Multi-Agent Logic Language for Encoding Teamwork) is a logic-based 
language for specifying the structures and processes of agent teams. MALLET syntax is 
based loosely on LISP, in the sense of using s-expressions and prefix notation. Variables 
are indicated with ‘?’ prefix.  The full syntax for MALLET is shown in Appendix A.  

4.1. Team structure knowledge 
At the top level, MALLET allows expression of knowledge about team structure in terms 
of:  

• Agent-role relationship, i.e. which agent plays which role. 

• Membership of a team  
 
For example, the following specification defines the team attackteam, which has two 
members, F0 and U0, playing different roles (i.e. fighter and bomber, respectively). 
 
  (plays-role F0 (fighter)) 
  (plays-role U0 (bomber)) 
  (team attackteam (F0 U0)) 
 
The actions agents are able to perform are defined in terms of operators. Operators, 
specified by preconditions and effects, are classified into individual and team operators. 
Individual operators are executed by only one agent at a time, whereas team operators are 
performed by a set of agents (e.g. those playing a given role). For example, the following 
specification defines individual operator move: 

 
(ioper move (?dir)  
(pre-cond (at self ?x ?y) (can_move ?dir ?new-x ?new-y))       

   (effects (at self ?new-x ?new-y) (not (at self ?x ?y))))       
 
This operator describes an action for the agent to move a step along a direction.  The 
precondition of the operator includes two predicates, connected implicitly by logic 
conjunction operator (i.e., AND).  The first predicate retrieves the current location of the 
agent (referred in MALLET by the keyword “self”).  The second predicate tests whether 
the agent can move in the direction given, and if so, binds the values of such a move to 
the variables ?new-x and ?new-y.  The evaluation of the test involves Horn clauses in 
JARE that considers obstacles and the boundary of the world in which the agent 
navigates.  After the move, the operator’s effect updates the location of the agent.   
 
As a second example, the following defines a team operator co_fire, which involves at 
least two agents firing at a given coordinate (specified by the arguments ?x and ?y) 
simultaneously: 
  (toper co_fire (?x ?y) 
   (num ge 2) 
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     • • • 
)  

The num constraint specifies the number of agents that should be involved in the team 
operator.  Obviously, agents involved in a team operator need to be synchronized.  This is 
achieved by the CAST kernel 
 
The capabilities of individual agents can be specified either explicitly via a capability 
specification or indirectly through a role specification.  For example, to state that F0 and 
U0 have the same capabilities, and are able to perform actions move and detectEnemy, 
one would have: 
   
  (capability (F0 U0) ((move ?dir) (detectEnemy)))   
 
Alternatively, one could state: 
 
  (role fighter ((move ?dir) (detectEnemy) (shoot ?x ?y))) 
  (role bomber ((move ?dir) (detectEnemy) (co_fire ?x ?y))) 
 
where fighters have the additional capability to shoot an enemy fighter and bombers have 
an additional capability to bomb an enemy base through the co_fire team operator. 
 

4.2. Process knowledge 
Operators are the basis for the hierarchical construction of team plans (i.e. operators are 
atomic actions in a plan hierarchy). Plans essentially characterize team processes. A plan 
in MALLET is composed of precondition, effects, and termination conditions, constraints 
for task allocations, and the procedural description of the process. The precondition, 
represented by a logical conjunct, expresses a necessary condition under which a plan (or 
an operator) can be performed. The effects, also represented by a logical conjunct, state 
the conditions that hold after the plan is successfully accomplished.  The termination 
conditions describe two kinds of conditions for terminating a plan: the success conditions 
and the failure conditions.  The constraints for task allocation are specified by the 
AGENTBIND construct. 
 
The process of a plan describes the procedure of how a team will accomplish their task. 
To be expressive, MALLET provides a rich set of constructs to define such procedures. A 
process consists of invocations of operators or plans, or arbitrary combinations using 
various constructs such as sequential, parallel, conditional, or iterative, blocks, etc. For 
example, the following is a high-level MALLET plan that characterizes the teamwork 
process for multiple teams to find and attack enemy base.  The plan is the second stage of 
an overall plan.  The first stage is to search and identify the location of the enemy base, 
and the second stage is to attack the enemy base.  Therefore, this plan includes the 
location of the enemy base as a precondition. 
 
   (plan Attack-Enemy-Base () 
     (pre-cond (is-enemy-homebase ?h1) (at ?h1 ?x ?y)) 
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     (process 

                      (par 

           (do scoutteam (seeking)) 

           (do fighterteam (attacking-enemy)) 

           (do bomberteam (attacking-base ?x ?y)) 

                          ); endpar 

     );endproc 

  );endplan 

   

  (plan attacking-enemy () 

     (pre-cond (enemy ?e) (at ?e ?x ?y)) 

   … 
  ) 

 
The keywords SEQ and PAR are used in MALLET to describe a sequential process and a 
parallel process respectively.  For instance, the Attacked-Enemy-Base plan described 
above involves a parallel process with three branches. These three branches describe 
subplans for three subteams.  The first branch specifies that the scout subteam should 
search for the enemy.  The second branch states that the fighterteam should attack 
enemies detected by the scouts.  The third branch specifies that a team of bomber agents 
should attack the enemy base.  The precondition of the attacking-enemy plan includes the 
location of enemy, i.e., (at ?e ?x ?y).  Therefore, a scout agent will proactively deliver the 
location of detected enemy to the fighterteam.  Other types of MALLET processes 
include conditional, i.e., (IF statement), iteration (i.e., WHILE statement), selection (i.e., 
CHOICE statement).  Components of these processes are other MALLET process.  
Hence, the MALLET language allows any processes to be embedded in another process 
to form more complex processes.  An important feature of MALLET is its flexibility in 
specifying the actors of a process using DO and JOINTDO.  We describe each of these 
MALLET constructs below.  The formal BNF-style notation of the MALLET process is 
as follows: 
  
 <MalletProcess> ::= 
 (<OperatorInvocation>) | 
 (<PlanInvocation>) | 
 (SEQ ( <MalletProcess> )+) | 
 (PAR ( <MalletProcess> )+) |  
 (IF (<COND> ( <Cond>)+) <MalletProcess> [(<MalletProcess>)]) |  
 (WHILE ( <COND> ( <Cond>)+) <MalletProcess>) |  
 (FOREACH (<COND> (<Cond>)+) <MalletProcess>) | 
 (FORALL ( <COND> ( <Cond>)+) <MalletProcess>) |  
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 (CHOICE ( <MalletProcess> )+ ) | 
 (JOINTDO ( <AND> | <OR> | <XOR> ) ( (<ByWhom> <MalletProcess>) )+) |  
 (DO <ByWhom> <MalletProcess>) |  
 (AGENTBIND (<AgentVars>) (CONSTRAINTS (<Cond>)+ )) 
 
The FORALL construct is an implied PAR over the condition bindings, whereas the 
FOREACH is an implied SEQ over the condition bindings. These process types are fairly 
expressive when the number of choices is unknown before runtime. FOREACH is most 
useful in giving a single agent a list of tasks with different arguments and FORALL can 
be used when multiple agents are needed, but their numbers are unknown.  The CHOICE 
construct is a control structure that takes a list of processes and executes them in order 
until one completes successfully. 
 
The AGENTBIND construct introduces flexibility to the teamwork process in that the 
agent selection is made dynamically at runtime to assure the satisfaction of certain 
teamwork constraints, such as finding an agent that is capable of some operation. The 
values for agent variables are to be assigned so as to satisfy the constraints. For example,  
 
  (AGENTBIND (?fi) 
  (CONSTRAINTS (playsRole ?fi fighter) (closestToEnemy ?fi))) 
 
states that ?fi will be assigned to an agent that plays the role of fighter and is closest to 
the enemy. The selected agents are then responsible for performing later steps (operators, 
sub-plans, or processes) associated with the agent variables. The scope for the binding to 
an agent variable extends to either the end of the plan in which the variable appears, or 
the beginning of the next agent-bind statement that binds the same variable, whichever 
comes first.  An AGENTBIND statement of an agent variable can occur anywhere in a 
plan, as long as it precedes the first DO statement in which the agent variable is an actor. 
 
The DO statement in a MALLET plan provides two functions: (1) it invokes a process; 
(2) it specifies the actor(s) for the process.  Syntactically, the actor specification can be a 
list of agent variables or the name of a team/subteam.  Semantically, the agents included 
in the actor specification should be sufficient for accomplishing the process.  From 
teamwork perspective, the actor specification in MALLET enables a knowledge engineer 
to describe the subteam for carrying out a team plan involving multiple agents. 
 
The JOINTDO construct provides a means for describing multiple synchronous processes 
to be performed by the identified agents or teams in accordance with the specified share 
type. A share type is either AND, OR, or XOR. For an AND share type, all of the specified 
subprocesses must be executed. For an XOR, exactly one subprocess must be executed, 
and for an OR, one or more subprocesses must be executed. A JOINTDO statement is not 
executed until all involved team members have reached this point in their plans. 
Furthermore, the statement following a JOINTDO statement in the team process does not 
begin until all involved team members have completed their part of the JOINTDO. 
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5. JARE 
JARE (Java Automated Reasoning Engine) is a back-chaining theorem-prover for making 
inferences using knowledge that is written in the form of a separate Horn-clause 
knowledge base, which stores agents’ beliefs. Initially, an agent has domain knowledge 
and belief about the team. After the agent is launched in the domain environment, the 
knowledge base is updated dynamically by newly acquired information through agents’ 
observations and communications. Post-conditions can also update the agents’ knowledge 
base with the effect of actions that were just carried out. Furthermore, an agent can 
update its own beliefs after making certain decisions. JARE is mainly used to determine 
the truth-value of conditions or constraints that need to be evaluated in interpreting 
MALLET expressions at run-time. JARE is also used to bind variables through queries 
for plan instantiation, conditional execution, and making communication decisions.  
 

5.1. Syntax of JARE language 
 
Jare uses a LISP-oriented syntax, with nested lists and infix notation (where the first 
element in each list is often the name of a predicate, and operator, etc.). Capitalization 
and white-spaces generally do not matter. Comments are indicated by semi-colons (';'), 
which cause disregard of all the remaining characters on the line.  

The basic unit of expression in Jare is a predicate. As is first-order logic, predicates have 
a predicate name followed by a list of arguments, called terms. However, the predicate 
name is written inside the parentheses as the first member of the list. Terms can either be 
constants (symbols or numbers), variables, or functions. Variables are indicated by 
symbols prefixed with a '?', such as ?x or ?temp. Functions are like predicates, in that 
they are lists with function names and arguments, though they occur as arguments inside 
other functions or predicates. Here are some examples:  

• (teaches bill ai-course)  
• (has-phd bill)  
• (sister judy ?sis)  
• (loves jude (mother-of judy)) - loves is a predicate, mother-of is a function  

Predicates can also be negated by enclosing them in another list, whose first element is 
'not'. Predicates and negations of predicates together are called "literals." Predicates 
without negations are sometimes called "positive literals," while negated predicates are 
sometimes referred to as "negative literals."  
 
     (not (warm december)) - a negative literal 
 
Sentences in Jare are based on Horn clauses, which are made out of one or more 
predicates. When a Horn clause contains a single literal, it acts as a fact (note, it has an 
extra set of enclosing parentheses). Facts by themselves cannot be negated. Here are 
examples of two facts:  
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     ((warm july)) 
     ((cold december)) 
When 2 or more literals are included, the Horn clauses can be read as a rule. Specifically, 
the first literal is known as the "head" (or consequent) of the rule, and remaining literals 
are called the "body" (or antecedents). A rule can be understood by reading in a 
"backwards" way by saying "if" after the head. For example, consider the following rule, 
which says that something is a good deal IF it has high quality and a low price:  
 
     ((good-deal ?x) (quality ?x high) (price ?x low))  
 
The antecedents are implicitly conjoined ("and-ed" together). There is no way to encode 
disjunction (except that multiple rules are alternatives to each other). The head of each 
rule must be a positive literal, but any of the other members of the clause (antecedents) 
may be negated. Note that there are no quantifiers; any variables are assumed to be 
universally quantified (read: forall). It is of central importance that the head of each 
clause be a positive literal (i.e. does not contain 'not'). In particular, facts must always be 
positive literals.  
 
Here is a brief list of commands you can run in Jare:  

• (query conjunction) - finds all solutions and prints out query with each set of 
bindings  

• (query-all conjunction) - same as query  
• (query-one conjunction) - finds first solution and prints out query with bindings 

substituted in  
• (assert predicate) - adds fact to knowledge base  
• (retract predicate) - retracts ALL clauses whose head unifies with given predicate 

(may have constants and/or variables)  

>(query (dog fido)) 
((dog fido)) 
 
>(query (cat fido)) 
fail 
 
>(query (animal fido)) 
((animal fido)) 
 
>(query (animal ?a)) 
((animal fido)) 
((animal fifi)) 
((animal tweety)) 
((animal opus)) 
 
>(assert (dog rex)) 
asserting: [dog, rex] 
 
>(assert (dog poochie)) 
asserting: [dog, poochie] 
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>(retract (bird ?x)) 
retracting: [bird, ?x] 
 
>(query (animal ?a)) 
((animal fido)) 
((animal fifi)) 
((animal rex)) 
((animal poochie)) 
 

5.2. List of features 
In this section, several important features implemented in Jare are discussed. The first is 
negation. While technically, Horn clauses are not supposed to contain negative literals, 
Jare allows antecedents in a rule to be negated. Syntactically, a negative literal is written 
by enclosing a predicate in another list with 'not' as the prefix (an example is shown 
above). The semantics of negation is handled exactly like Prolog: through negation-as-
failure. That is, an antecedent (not (P)) is found to be true exactly when (P) cannot be 
proved. Jare recursively starts a new search for a proof of (P), and then continues the 
original proof if and only if no solution for (P) is found. Note that the proof of (P) is 
carried out in the current binding environment (with current substitutions), but the fact 
that the original proof proceeds only if the proof of (P) fails means that the binding 
environment itself will not be modified. As an example, here is a rule with a negative 
antecedent. It says that something is a week-day if it is a day but not a weekend. Days 
could be 7 facts enumerating Sat, Sun, Mon, .... Each will be tried, but those that satisfy 
weekend (i.e. Sat and Sun) will be filtered out as solutions.  
 
((week-day ?x) (day ?x) (not (weekend ?x))) 
 
The next major feature of Jare is procedural attachments. Procedural attachments are 
predicates with special pre-defined meanings that are essentially implemented in Jare 
code. Currently, there are two classes of procedural attachments: math operations, and list 
operations.  

Math operations include two types: relations (e.g. equality) and functions (e.g. +). 
Relations are generally 2-argument predicates. Both arguments must be bound (i.e. you 
can't evaluate a relation on a free variable; Jare will signal an error if you try), and both 
arguments must be numeric. Here is a list of relational predicates:  

• (= ?x ?y)  
• (< ?x ?y)  
• (> ?x ?y)  
• (<= ?x ?y)  
• (>= ?x ?y)  

Straight inequality may be implemented as: (not (= ?x ?y)). Note: Jare attempts to convert 
anything that begins with a +, -, ., or digit into a float, and math operations are carried out 
on these (so 6.0 and 6 are equal). (However, ‘+’, ‘-‘, and ‘.’, may still be used as symbols 
themselves.) The predicate 'eq' can be used for comparing equality of symbols.  
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Math functions generally take 3 arguments. They can be used to verify relations if all 3 
args are bound, or any one of the three may be left unbound and Jare will fill in the 
answer (expect mod and pow, for which only the third argument can be unbound). The 
implemented math functions are:  

• (+ ?x ?y ?z)  
• (- ?x ?y ?z)  
• (* ?x ?y ?z)  
• (/ ?x ?y ?z)  
• (mod ?x ?y ?z)  
• (pow ?x ?y ?z)  

Here are some examples of using these math predicates:  
 
>(query (+ 1 2 3)) 
((+ 1 2 3)) 
 
>(query (+ 2 3 ?x)) 
((+ 2 3 5.0)) 
 
>(query (+ 3 ?x 4)) 
((+ 3 1.0 4)) 
 
>(query (mod 9 4 ?x)) 
((mod 9 4 1.0)) 
 
Recently, we added some other useful math predicates, like sqrt, exp, log, mod, sin, cos, 
and tan.  

Another class of procedural attachments are provided for support of list operations. In 
Jare, lists can be represented as terms within predicates by using a special function 'list' 
that can have any length. For example, the list of a, b, and c, is (list a b c), and the empty 
list is just (list). Currently, procedural attachments are provided only for basic operations, 
such as 'cons', 'first', and 'rest'. These allow you to construct and deconstruct lists. Then a 
larger set of additional list predicates is defined over this through axioms in list.kb, which 
is automatically loaded into Jare on startup.  

Cons works as follows. You must give it an object and a list, and it returns a new list with 
the object stuck in the front. Hence cons takes a total of 3 arguments. If the 3rd argument 
is bound, cons verifies its correctness (i.e. succeeds if it is correct, else fails). More 
interestingly, if the 3rd arg is unbound, Jare binds the answer (new list) to it. First and 
Rest extract the corresponding elements from a list, returning an object or a list, 
respectively. Again, if the second argument is bound, its correctness is checked, else the 
variable is bound to the answer. Here are the basic list predicates with examples:  

• (cons ?x ?y ?z) - (cons x (list a b) (list x a b))  
• (first ?x ?y) - (first (list x a b) x)  
• (rest ?x ?y) - (rest (list x a b) (list a b)  
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The additional list predicates defined through axioms include:  

• (empty ?x)  
• (length ?x ?n)  
• (nth ?x ?n ?y) - ?n is the position, starts counting from 0  
• (second ?x ?y)  
• (third ?x ?y)  
• (member ?x ?y) - checks to see if ?x is in the list ?y  
• (reverse ?x ?y)  
• (append ?x ?y ?z) - e.g. (append (list 1 2) (list a b) (list 1 2 a b))  

Generally, only the last argument can be unbound for these predicates.  
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6. How to use CAST 
CAST agents can be displayed and controlled through CAST monitor, a graphical user 
interface. The CAST monitor has two parts team monitor and individual agents monitor. 
The team monitor is used for controlling the team actions (viewing or adding team 
members, starting or suspending team perorations) and displaying the behavior of the 
team by listing the actions for each agent (see Figure 2). Each agent has an individual 
agent monitor, a tab captioned as the agent name. In addition to the functions that 
included in the team monitor, the individual agent monitor provides other comprehensive 
monitoring functions including KB query panel that allows a user to access agent’s 
knowledge base, a PrT net display that allows a user to monitor the current process states.  
In the following sections, we use a firefighting domain scenario to illustrate how the 
CAST monitor works for a firefighter team. The CAST monitor includes the following 
tabs: Monitor CAST Agents, Agent F1, Agent F2, and Agent Am. F1, F2, and Am are 
corresponding to firefighter agent 1, 2, and an ambulance agent respectively. 

6.1. CAST team monitor 
Monitor CAST Agents is the panel for monitoring all individual agents’ behavior and 
status. The functions of buttons are listed in table 1. 
 

Table 1: Buttons in the team monitor window. 
Button Description 

Add Agent is reserved for dynamically adding agent to a team 
Next Step makes the agent proceed with one step 
Unpause 
All 

unpauses all the agents to let them proceed automatically; 
the button will change to Pause All after it is pressed 

 

 
Figure 2: CAST team monitor. 
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6.2. Individual agent monitor 
Under the individual agent tab, the information and control panels of the specific agent is 
displayed. The behaviors and status of this agent are displayed in the window on the left 
side. The buttons and their functions are listed in Table 2. 
 

 Table 2: Buttons in the individual monitor window. 
Buttons Description 

Unpause/Pause 
Agent 

unpauses this agent only, after unpaused, the button changes to 
Pause Agent  

Show/Hide Process 
Nets 

generates a tab for every plan of this agent, and under every tab 
is the process net for the plan; after it is pressed, the button 
changes to Hide Process Nets 

Show MALLET 
Specifications 

shows the MALLET specification in the window of Knowledge 
Base Output 

Save as MALLET 
File 

saves the MALLET specifications in the window of Knowledge 
Base Output as a MALLET File 

 

 

Figure 3: Individual agent monitor. 

6.2.1. KB query panel 
The KB query panel allows a user to access agent’s knowledge base during runtime. 
Therefore it provides a powerful tool for agent developers to “debug” (watch and modify 
agent’s knowledge) agent behavior dynamically. Figure 4 shows a sample out put and the 
list of query functions, which is explained below the Figure. 
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Figure 4: KB query panel. 

• “Query” is for querying knowledge from the knowledge base. Input the 
sentence in the blank space with two brackets, and then press Enter. The 
output of the query will be displayed in the output window. If it is true, the 
queried sentence will be displayed again. If it is false, “fail” will be 
displayed. 

• “Assert” is for inserting a new knowledge to the knowledge base. Input the 
sentence in the blank space with a bracket, and then press Enter. “Asserting: 
S” will be displayed in the output window, where S means the asserted 
sentence.  

• “QueryforBindings” is for querying for agent bindings.  
• “Retract” is for deleting a fact from the knowledge base. It is a reverse 

process of Assert. 
• “Execute” is for dynamically loading a file. 
• “New info” is for triggering a pro-tell, prefixed as “info…”  
• “Print KB” is for printing out the knowledge base in the output window.  

 

6.2.2. Agent communication panel 
The part at the bottom of the window provides interactions between different agents. 
Receiver ID identifies the receiver. Message Type identifies the type of a message you 
want to deliver to other agent. Message Text is the content of a message. Start new plan 
identifies the other plan you want to start at this point.  

6.2.3. PrT net display panel 
When the Show Process Nets button on the left side is clicked, all the plans of this agent 
will be shown in the form of the Process Net. The process net of a plan is a PrT net as 
Figure 4 shows. A PrT net consists of Places, Transitions, and Arcs. A place (in oval) 
indicates a possible system state. A place can contain tokens to indicate current state of 
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the system. A transition (in rectangle) is an action which changes the system state from 
one place to another. A transition is connected to a place by an arc. The arcs starting at a 
place and ending at a transition are called input arcs, and those starting at a transition and 
ending at a place are called output arcs.  
 
The display of a Pr. T net uses five different colors to indicate different states: 

• Grey: the grey rectangle separated with the process net at the top of the window 
indicates the local binding of the variables of the agent states. E.g. ?FIRE=fire2 
indicates the FIRE variable is bound to fire2 at the point.  

• Red: some places will be colorized as red when they are active. 
• Green: the places that are not active.  
• Yellow: the transitions in yellow means they have already been passed through 

before.  
• Blue: the transition in blue means they haven’t been passed through yet.  

The three buttons listed below the process net window are Fire a Transition, Toggle 
Layout, and Print Net. Fire a Transition provides a convenient way to test how the 
process will be executed. That means the agent developers can check if the agent can 
make a correct decision by comparing with the desired choices and the actual choices. 
Toggle Layout button is used for automatically toggling the layout of the Pr. T. Print Net 
is for printing out the Pr. T.  
     

 
Figure 5: PrT net display. 
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7. How to program in CAST 

7.1. CAST system overview 
A team of CAST agents can interact with different types of domain or environments. 
First, CAST agents can be used as a model to simulate team behaviors. For example, 
CAST has been used to study how to enhance team performance by proactive 
information delivery. The experiments showed agents coordinate with different mental 
models on teamwork have different team performance. Second, CAST agents can be used 
as intelligent agents to model opponents in a computer game. For example, CAST has 
been used in dTank, a tank-game environment to compare the team performance of 
different agent architecture. Third, CAST agents can be used to simulator team-members 
in a training environment. CAST has been used in a simulated combat environment that 
designed for combat operational training.  In the training, CAST agents are used to 
provide online feedbacks to trainees. Of course, CAST can be applied to other problem 
domains where teamwork or collaboration is required. In this section, we use dTank 
domain as an example to illustrate how to build an agent team with CAST. 
 
Figure 6 shows the system architecture including domain, domain monitor, agents, and 
agent monitor. From the Figure, we can see it is a distributed system which is composed 
of two parts domain and agents. Agents interact with a domain: sense domain states and 
apply operation effects to the domain. Agents interact with each other by communication. 
A CAST monitor provides a display for users about the agents’ knowledge, states, and 
operations. Normally, a domain monitor is linked to the domain or simulator to show the 
dynamics of domain states. 

Figure 6: CAST system architecture. 

Domain / Domain simulator 
dTank (acs.ist.psu.edu/dTank) is a simulator created by the Applied Cognitive Science 
Lab (ACS) at the Pennsylvania State University. It provides an adversarial real-time test 
bed for conducting experiments with cognitive models in a tank combat setting.   The 
simulator constructs a 10 by 10 grid-world composed of stone barriers and grassland. A 
simulated tank can move forward on grassland but cannot cross a stone or another tank. 
Tanks are able to navigate their environment by moving in the forward direction or 
turning either clockwise or counter clockwise. A tank can rotate its turret freely (360o) 
and the visual field is centered on the turret angle. It can observe world objects (other 
tanks or stones) if the objects are within its 100o visual field without being blocked by 
other game objects.  A tank aims its gun at an enemy tank by turning its turret. Initially, a 
tank has a certain level of health, represented by health points, which decrees after the 

Domain 

Domain Monitor CAST Monitor 

Agent A 

Agent B 
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tank is shot by others. When health points drop to zero, the tank dies. A tank can 
communicate with its teammates through a simulated radio function. A first-person 
driving view that can log behavior is also included, which will support human vs. human 
and human vs. agent games, as well as gathering data to model human users.  Figure 7 
shows a plan-view interface for monitoring a tank game. The dTank manual [6] provides 
more information. 
 

 

Figure 7: dTank plan-view monitoring interface. 

Domain monitor 
Domain monitor is normally provided for human to monitor the online domain situation. 
Therefore, the information coming to the domain monitor may not be appropriate to feed 
as the agent’s sensory input. For example, one of the goals of dTank is to provide a 
testing environment in which agents and humans can interact on equal footing: both 
synthetic and human players should have similar sensory input from the game 
environment.  If agents are able to view the entire game board along with the positions of 
all tanks while human can only see other tanks within their visual field, agents would 
have an unfair advantage over their human opponents.  

CAST monitor 
CAST monitor is useful to monitor the state of agents. It also provides log functions that 
can keep track of the agents’ operational behavior. However, CAST monitor is not 
essential for applying the CAST agents in a domain. 

CAST source code  
MALLET2: includes the code for approaching MALLET files.  
Domain: is the world simulator. The operators in the MALLET file should have been 
defined in domain.  
Kernel2: the key part of CAST agent, which realized the main features of CAST, such as 
Dynamic Task Allocation, Detection of Information Needs of Teammates, Proactively 
Information Delivery.  
Monitor: is to display the interface to the user for dynamically controlling the process of 
CAST agent.  
Util: include some modules which are necessary for dealing with knowledge base.  
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7.2. Basic steps of building a CAST team 
We adopt an agent oriented system analysis and design approach for building teams in 
CAST. The main tasks of creating teams with CAST include knowledge engineering for 
agents and facilitating functions that handle connections between agents and a domain.  

1. Study domain and get rules, APIs etc. 
The first step is to study the domain. A domain (simulator) defines the rules of the 
world such as the sensory (visual, audio inputs), operation effects (agents’ outputs), 
and world state updates (time, resources). As an agent designer, you need to be clear 
about the environments which the agents will interact with. 
 
Then, you need learn about the interaction protocols that are defined as API functions 
or network messages. For example the dTank defines its protocols as specified in 
table 3. By study the interactive protocols, you should identify how to handle agents’ 
sensory inputs and apply agents’ operators. In the dTank example, we may identify 
that agents can sense information about a tank including id, color, etc. We can also 
learn to apply operators such as move and turn.  
 

Table 3: dTank communication protocol. 
 

^io 
 ^input-link 
  ^dtank 
   ^id <<string>> 
   ^tank-color <<string>> 
   ^hit yes 
   ^died yes 
   ^status 
    ^health <<int 1-10>> 
^output-link 
  ^dtank 
   ^move 
    ^status complete 
   ^turn 
    ^direction clockwise | counter-clockwise 
    ^status complete 

2. Build domain adaptor 
According to the interaction protocol, you need build a domain adaptor that specifies 
basic communication with the domain. In the dTank example, the adaptor is 
composed of four classes:  

• cast3.domain.JTankWorld.TankClient (defines the socket connection 
functions that facilitate the basic communication between the world 
simulator and agents.) 

    public TankClient(String host, int port) { 
        try { 
            this.host = host; 
            this.port = port; 
            tankSocket = new Socket(host, port); 
            out = new PrintWriter(tankSocket.getOutputStream(), true); 
            in = new BufferedReader(new 
InputStreamReader(tankSocket.getInputStream())); 



 

30/37 

        } catch (UnknownHostException e) { 
            System.err.println("Couldn't connect to host|port: " + host + "|" + 
                               port + "."); 
            System.exit(1); 
        } catch (IOException e) { 
            System.err.println("Couldn't get I/O for the connection."); 
            System.exit(1); 
        } 
        send("agent join"); 
        this.start(); 
    }  
• cast3.domain.JTankWorld.AgentJTankWorldAdapter (defines how to 

apply the operators such as move and turn and how to handle the incoming 
messages) 

    public void doMove() { 
        operatorID++; 
 //set command $base$dTank_delim$tail$dTank_delim$id 
        sendWorldMessage("moveForward| |" + operatorID); 
    } 
 
    public void doTurn(String dir) { 
        operatorID++; 
 int direction = 1; 
 if (dir.equalsIgnoreCase("left") ) 
     direction = 0; 
        sendWorldMessage("rotate|" + direction + "|" + operatorID); 
    } 
 
    public void handleMessage(String message, String host, int port) { 
      super.handleMessage(message, host, port); 
      handleWorldMessage(message); 
    } 
 
    public void handleWorldMessage(String msg) { 
        if (agent != null) 
            agent.handleWorldMessage(msg); 
    } 
 
    public void sendWorldMessage(String msg) { 
        send(msg); 
    } 
• cast3.domain.JTankWorld.JTankAgent (defines how to handle/parse the 

incoming messages) 
public void handleWorldMessage(Object message) { 
        String strMeg = trimBye((String)message); 
        StringTokenizer strtok = new StringTokenizer(strMeg, stop); 
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        String type = new String(); 
 
        if (strtok.hasMoreTokens()) 
            type = strtok.nextToken(); 
        else 
            System.out.println("error getting world message:" + 
                               message.toString()); 
 
        if (type.equalsIgnoreCase("InitialSettings")) 
            handleInitialMessage(strtok); 
        else if (type.equalsIgnoreCase("ACTION")) 
            handleActionMessage(strtok); 
        else if (type.equalsIgnoreCase("ACK")) 
            handleAckMessage(strtok); 
        else if (type.equalsIgnoreCase("STATUS")) 
            handleStatusMessage(strtok); 
        else if (type.equalsIgnoreCase("INPUT")) 
            handleInputMessage(strtok); 
        else if (type.equalsIgnoreCase("SCAN")) 
            handleScanMessage(strtok); 
        else if (type.equalsIgnoreCase("EVENT")) 
            handleEventMessage(strtok); 
        else if (type.equalsIgnoreCase("VISUAL")) 
            handleVisualMessage(strtok); 
        else if (type.equalsIgnoreCase("STOPAGENT|")) 
            setPaused(true); 
        else if (type.equalsIgnoreCase("STARTAGENT|")) 
            setPaused(false); 
        else if (!type.startsWith("join")) 
            handleUndefinedMessage(type, strtok); 
    } 
• cast3.domain.JTankWorld.JTankDomain (defines how to process the 

sensed information, and how to apply operators (the operators will be 
called by the agent execution module).) 

    public void processSense() { 
        if (!setTeam){ 
          jTankWorldAdapter.sendWorldMessage("setTeam|" + getTeam()); 
          setTeam = true; 
        } 
        updateTime(); 
        KBEnv solution = new KBEnv(); 
        String find = "((sense ?sense))"; 
        solution = getAgent().getKB().queryForBindings(find); 
 
        while (solution != null) { 
            Vector sense = (Vector)solution.lookup("?sense"); 
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            getAgent().proactiveTell(sense); 
            solution = getAgent().getKB().next(); 
        } 
 
        ((JareKBWrapper)getAgent().getKB()).retract("(sense ?sense)"); 
    } 
 
    /* 
     * operators 
     */ 
    public void move() { 
        jTankWorldAdapter.doMove(); 
    } 
 
    public void attack() { 
        jTankWorldAdapter.doAttack(); 
    } 

3. Get domain knowledge   
An agent can be viewed as being composed of two parts: architecture and knowledge. 
The agent architecture is fixed, you should not change CAST architecture, unless it is 
necessary. Most of the agents’ behavior should be captured as knowledge. We can 
group the knowledge part further into domain-dependent knowledge and domain-
independent knowledge. The domain independent knowledge is the knowledge that is 
needed to compliment certain missing features from architecture. In the dTank team, 
for example, knowledge about how to aim a gun at an enemy is domain-dependent; 
knowledge on how to choose an indifference operator is domain-independent.  We 
need to capture agent’s knowledge before the agents know how to collaborate in a 
domain. 

The procedural knowledge contains a two-phase plan: search and attack, as illustrated 
in Figure 8. Initially, a team of agents wander around and search for enemy tanks. 
Once an enemy is found, the team-members communicate to inform each other of the 
enemy location and to coordinate their attack. Next, team members attack the target 
together and destroy it. This process iterates until all the enemies are destroyed. 
Declarative domain knowledge includes moving directions, stone locations, and so 
on.  

 

Search

Move
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Rotate Turret

Lock target

Attack
Aim Turret
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Figure 8: Agent plan decomposition. 
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4. Teamwork knowledge 
In addition to domain knowledge, the designer also needs to capture teamwork 
knowledge, which defines the team composition, roles, and capabilities. For example, 
the following MALLET specifies a team for dTank domain. 
 
(agent F1) 
(agent F2) 
 (team tankteam (F1 F2)) 
 
(capability F1  ((move) (turn) (attack) (rotateTurret) (raiseShields) (scan))) 
(capability F2  ((move) (turn) (attack) (rotateTurret) (raiseShields) (scan))) 
 
(plays-role F1  (fighter_tank)) 
(plays-role F2  (fighter_tank)) 
 
(role fighter_tank ((move) (turn) (attack))) 
 
Moreover, the agent should also specify how the tasks should be allocated among the 
team members. 
(plan attack_enemy () 
  (pre-cond  (at ?tank ?x ?y)(is enemy ?tank)) 
  (process 
    (agent-bind 
      (?f) 
      (constraints (playsRole fighter_tank ?f)) 
    ) 
    … 
  );endproc 
);endplan 

5. Starters 
A CAST team is normally configured in an XML file, which defines the agent name, 
domain, MALLET plan, cast monitor, knowledge-base type, world address, port, and 
communication type. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE CAST SYSTEM "jTank.dtd"><CAST> 
<AGENT> 
  <NAME>F1</NAME> 
  <DOMAIN>cast3.domain.JTankWorld.JTankDomain</DOMAIN> 
  <MALLET>teamplans/jTank/casttankteam.mlt</MALLET> 
  <MONITOR>localhost</MONITOR> 
  <KBTYPE>cast3.util.Jare.JareKBWrapper</KBTYPE> 
  <WORLD_HOST>localhost</WORLD_HOST> 
  <WORLD_HOST_PORT>3400</WORLD_HOST_PORT> 
  <COMM_FEATURE>PROTELL</COMM_FEATURE> 
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</AGENT> 
<AGENT> 
  <NAME>F2</NAME> 
  <DOMAIN>cast3.domain.JTankWorld.JTankDomain</DOMAIN> 
  <MALLET>teamplans/jTank/casttankteam.mlt</MALLET> 
  <MONITOR>localhost</MONITOR> 
  <KBTYPE>cast3.util.Jare.JareKBWrapper</KBTYPE> 
  <WORLD_HOST>localhost</WORLD_HOST> 
  <WORLD_HOST_PORT>3400</WORLD_HOST_PORT> 
  <COMM_FEATURE>PROTELL</COMM_FEATURE> 
</AGENT> 
</CAST> 
 
An agent starter class (cast3.domain.JTankWorld.JTankAgentStarter) is responsible 
for instantiating the agents: 
      while (it.hasNext()){ 
        Element agent = (Element)it.next(); 
        String name = agent.getChildText("NAME"); 
        String domain = agent.getChildText("DOMAIN"); 
        String mallet = agent.getChildText("MALLET"); 
        String monitor = agent.getChildText("MONITOR"); 
 
        domainhost=agent.getChildText("WORLD_HOST"); 
        domainhostport=agent.getChildText("WORLD_HOST_PORT"); 
 
        String feature=agent.getChildText("COMM_FEATURE"); 
 
        JTankAgent cast = 
            new JTankAgent(name, mallet, domainhost, domainhostport); 
 
      cast.setFeature(feature); 
 
       AgentDisplay ap = new AgentDisplay(cast,"cast3.util.Jare.JareKBWrapper"); 
       manager.addAgent(name, ap); 
      } 

6. Test 
Observing the agent’s behavior, checking agent’s knowledge base with query 
commands, and monitoring the state of the agent’s process net are basic methods for 
testing and debugging. The followings are general guidelines for testing: 

• Test the agent adaptor before testing the agent. 
• Test the declarative knowledge (predicates) offline before testing the 

plans. 
• Test plans with simple conditions before testing with complex conditions. 
• Test single agent before testing the team. 
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8. Appendix A: the syntax of MALLET 
CompilationUnit ::= ( AgentDef | TeamDef | MemberOf | GoalDef | Start | CapabilityDef | RoleDef | 

PlaysRole | FulfilledBy | IOperDef | TOperDef | PlanDef | RuleDecl | LoadDecl 
)* <EOF> 

PlanName ::= <IDENTIFIER> 

OperName ::= <IDENTIFIER> 

PlanOrOperName ::= <IDENTIFIER> 

AgentName ::= <IDENTIFIER> 

TeamName ::= <IDENTIFIER> 

AgentOrTeamName ::= <IDENTIFIER> 

RoleName ::= <IDENTIFIER> 

IdentifierListReq ::= "(" ( <IDENTIFIER> )+ ")" 

VariableListOpt ::= "(" ( <VARIABLE> )* ")" 

VariableListReq ::= "(" ( <VARIABLE> )+ ")" 

MixedListOpt ::= "(" ( <IDENTIFIER> | <VARIABLE> )* ")" 

MixedListReq ::= "(" ( <IDENTIFIER> | <VARIABLE> )+ ")" 

Invocation ::= "(" PlanOrOperName ( <IDENTIFIER> | <VARIABLE> )* ")" 

AgentDef ::= "(" <AGENT> AgentName ")" 

TeamDef ::= "(" <TEAM> TeamName ( "(" ( AgentName )+ ")" )? ")" 

MemberOf ::= "(" <MEMBEROF> AgentName ( TeamName | "(" ( TeamName )+ ")" ) ")" 

Pred ::= "(" ( <IDENTIFIER> | <NOT> | <EQUATION> | <LT> | <GT> | <LE> | 
<GE> ) ( <IDENTIFIER> | <VARIABLE> | Pred )* ")" 

Cond ::= Pred 

 | "(" <NOT> Cond ")" 

AssertDef ::= "(" <ASSERT> ( Pred )+ ")" 

RuleDecl ::= "(" <RULE> ( Pred )+ ")" 

LoadDecl ::= "(" <LOAD> <IDENTIFIER> ")" 

RetractDef ::= "(" <RETRACT> ( Pred )+ ")" 

GoalDef ::= "(" <GOAL> AgentOrTeamName ( Cond )+ ")" 

Start ::= "(" <START> AgentOrTeamName Invocation ")" 

CapabilityDef ::= "(" <CAPABILITY> ( AgentName | "(" ( AgentName )+ ")" ) ( Invocation | 
"(" ( Invocation )+ ")" ) ")" 

RoleDef ::= "(" <ROLE> RoleName ( Invocation | "(" ( Invocation )+ ")" ) ")" 

PlaysRole ::= "(" <PLAYSROLE> AgentName ( RoleName | "(" ( RoleName )+ ")" ) ")" 

FulfilledBy ::= "(" <FULFILLEDBY> RoleName ( AgentName | "(" ( AgentName )+ ")" ) 
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")" 

PreConditionList ::= "(" <PRECOND> ( Cond )+ ( ( ":IF-FALSE" | ":if-false" ) ( <FAIL> | 
<WAIT> ( ( <IDENTIFIER> )+ )? | <ACHIEVE> ) )? ")" 

EffectsList ::= "(" <EFFECTS> ( Cond )+ ")" 

TermConditionsList ::= "(" <TERMCOND> ( <SUCCESS> | <FAILURE> )? ( Cond )+ ")" 

NumSpec ::= "(" <NUM> ( <EQ> | <LT> | <GT> | <LE> | <GE> ) ( <IDENTIFIER> )+ 
")" 

IOperDef ::= "(" <IOPER> OperName VariableListOpt ( PreConditionList )* ( EffectsList )? 
")" 

TOperDef ::= "(" <TOPER> OperName VariableListOpt ( PreConditionList )* ( EffectsList 
)? ( NumSpec )? ")" 

PlanDef ::= "(" <PLAN> PlanName VariableListOpt ( PreConditionList | EffectsList | 
TermConditionsList )* "(" <PROCESS> MalletProcess ")" ")" 

ByWhomSpec ::= AgentOrTeamName 

 | MixedListReq 

 | <VARIABLE> 

MalletProcess ::= "(" <SEQ> ( MalletProcess )+ ")" 

 | "(" <PAR> ( MalletProcess )+ ")" 

 | "(" <IF> "(" <COND> ( Cond )+ ")" MalletProcess ( MalletProcess )? ")" 

 | "(" <WHILE> "(" <COND> ( Cond )+ ")" MalletProcess ")" 

 | "(" <FOREACH> "(" <COND> ( Cond )+ ")" MalletProcess ")" 

 | "(" <FORALL> "(" <COND> ( Cond )+ ")" MalletProcess ")" 

 | "(" <CHOICE> ( MalletProcess )+ ")" 

 | "(" <JOINTDO> ( <AND> | <OR> | <XOR> )? ( "(" ByWhomSpec 
MalletProcess ")" )+ ")" 

 | "(" PlanOrOperName ( <IDENTIFIER> | <VARIABLE> )* ")" 

 | "(" <DO> ByWhomSpec MalletProcess ")" 

 | "(" <AGENTBIND> VariableListReq "(" <CONSTRAINTS> ( Cond )+ ")" 
")" 

 | ( AssertDef )+ 

 | ( RetractDef )+ 
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