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Abstract

Cognitive studies indicate that members of a high per-
forming team often develop shared mental models to pre-
dict others’ needs and coordinate their behaviors. The
concept of shared mental models is especially useful in
the study of human-centered collaborative systems that
require humans to team with autonomous agents in com-
plex activities. We take the position that in a mixed hu-
man/agent team, agents empowered with cognitive load
models of human team members can help humans de-
velop better shared mental models. In this paper, we fo-
cus on the development of realistic cognitive load mod-
els. Cognitive experiments were conducted in team con-
texts to collect data about the observable secondary task
performance of human participants. The data were used
to train hidden Markov models (HMM) with varied num-
ber of hypothetical hidden states. The results indicate
that the model spaces have a three-layer structure. Sta-
tistical analysis reveals some characteristics of top layer
models, which can be used in guiding the selection of
HMM-based cognitive load models.

Introduction

Human-centered multi-agent teamwork has attracted increas-
ing attentions in multi-agent systems field (Bradshaw et al.,
2002; Norling, 2004). Human-centered teamwork, involv-
ing both humans and software agents, is about collaboratively
establishing situation awareness, developing shared mental
models as situation evolves, and appropriately adapting to
mixed-initiative activities. Humans and autonomous agents
are generally thought to be complementary: while humans
are limited by their cognitive capacity in information pro-
cessing, they are superior in spatial, heuristic, and analogi-
cal reasoning; autonomous agents can continuously learn ex-
pertise and tacit problem-solving knowledge from humans to
improve system performance.

However, the foundation of human-agent collaboration
keeps being challenged because of nonrealistic modeling of
mutual awareness of the state of affairs. In particular, few
researchers look beyond to assess the principles of modeling
shared mental constructs between a human and his/her as-
sisting agent. Moreover, human-agent relationships can go
beyond partners to teams (Fan, Yen, & Volz, 2005). Many in-
formational processing limitations of individuals can be alle-
viated by having a group perform tasks. Although groups also
can create additional costs centered on communication, reso-
lution of conflict, and social acceptance, it is suggested that
such limitations can be overcome if people have shared cog-
nitive structures for interpreting task and social requirements

(Lord & Maher, 1990). Therefore, there is a clear demand
for investigations to broaden and deepen our understanding
on the principles of shared mental modeling among members
of a mixed human-agent team.

There are lines of research on multi-agent teamwork, both
theoretically and empirically. For instance, Joint Intention
(Cohen & Levesque, 1991) and SharedPlans (Grosz & Kraus,
1996) are two theoretical frameworks for specifying agent
collaborations. One of the drawbacks is that, although both
have a deep philosophical and cognitive root, they do not ex-
plicitly accommodate the modeling of human team members.
Cognitive studies suggested that teams which have shared
mental models are expected to have common expectations
of the task and team, which allow them to predict the be-
havior and resource needs of team members more accurately
(Rouse, Cannon-Bowers, & Salas, 1992; Klimoski & Mo-
hammed, 1994). Cannon-Bowers et al. (Rouse et al., 1992)
explicitly argue that team members should hold compatible
models that lead to common “expectations”. We agree on
this and believe that the establishment of shared mental mod-
els among human and agent team members is a critical step
to advance human-centered teamwork research.

The long-term goal of our research is to understand how
shared cognitive structures can enhance human-agent team
performance. In particular, we argue that to favor human-
agent collaboration, an agent system should be designed to
allow the estimation and prediction of human teammates’
(relative) cognitive loads, and use that to offer improvised,
unintrusive help. Ideally, being able to predict the cogni-
tive/processing capacity curves of teammates could allow
team members to help the right party at the right time (Fan
& Yen, 2007), avoiding unbalanced work/cognitive loads
among the team.

The specific objective of the work reported here is to de-
velop a computational cognitive capacity model to facilitate
the establishment of shared mental models. The rest of the pa-
per is organized as follows. In Section 2 we review studies on
cognitive load and its measurements. Section 3 gives our mo-
tivation of using HMM-based approach to modeling human
cognitive loads. Section 4 describes the cognitive task design
and the experiment conducted to collect observable measures
of secondary task performance in a team context. Section 5
reports the methodology of learning Hidden Markov Mod-
els (HMM) and the principles of selecting appropriate HMM
models for an agent to estimate its human partner’s dynamic
cognitive load.



Background on Cognitive Load Studies

People are information processors. Cognitive load studies
(Miller, 1956; Lord & Mabher, 1990; Baddeley, 1992) are,
by and large, concerned about working memory capacity and
how to circumvent its limitations in human problem-solving
activities such as learning and decision making.

According to the cognitive load theory (Paas & Merrien-
boer, 1993), cognitive load is defined as a multidimensional
construct representing the load that a particular task imposes
on the performer. It has a causal dimension including causal
factors that can be characteristics of the subject (e.g. exper-
tise level), the task (e.g. task complexity, time pressure), the
environment (e.g. noise), and their mutual relations. It also
has an assessment dimension reflecting the measurable con-
cepts of mental load (imposed exclusively by the task and en-
vironmental demands), mental effort (the cognitive capacity
actually allocated to the task), and performance.

Lang’s information-processing model (Lang, 2000) con-
sists of three major processes: encoding, storage, and re-
trieval. The encoding process selectively maps messages
in sensory stores that are relevant to a person’s goals into
working memory; the storage process consolidates the newly
encoded information into chunks, forming associations and
schema to facilitate subsequent recalls; the retrieval process
searches the associated memory network for a specific ele-
ment/schema and reactivates it into working memory. The
model suggests that processing resources (cognitive capac-
ity) are independently allocated to the three processes. In
addition, working memory is used both for holding and for
processing information (Baddeley, 1992). Due to limited ca-
pacity, when greater effort is required to process information,
less capacity remains for the storage of information. Hence,
the allocation of the limited cognitive resources has to be bal-
anced in order to enhance human performance. This comes
to the issue of measuring cognitive load, which has proven
difficult for cognitive scientists.

Cognitive load can be assessed by measuring mental load,
mental effort, and performance using rating scales, psycho-
physiological, and secondary task techniques (Paas, Tuovi-
nen, Tabbers, & Gerven, 2003). Self-ratings may appear
questionable and restricted, especially when instantaneous
load needs to be measured over time. Although physiological
measures are sometimes highly sensitive for tracking fluctuat-
ing levels of cognitive load, costs and work place conditions
often favor task- and performance-based techniques, which
involve the measure of a secondary task as well as the pri-
mary task under consideration. Secondary task techniques
are based on the assumption that performance on a secondary
task reflects the level of cognitive load imposed by a primary
task (Sweller, 1988). From the resource allocation perspec-
tive, assuming a fixed cognitive capacity, any increase in cog-
nitive resources required by the primary task must inevitably
decrease resources available for the secondary task (Lang,
2000). Consequently, performance in a secondary task de-
teriorates as the difficulty or priority of the primary task in-
creases. The level of cognitive load can thus be manifested by
the secondary task performance: the subject is getting over-
loaded if the secondary task performance drops.

A secondary task can be as simple as detecting a visual
or auditory signal but requires sustained attention. Its per-

formance can be measured in terms of reaction time, accu-
racy, and error rate. However, one important drawback of
secondary task performance, as noted by Paas (Paas et al.,
2003), is that it can interfere considerably with the primary
task (competing for limited capacity), especially when the
primary task is complex. To better understand and measure
cognitive load, Xie and Salvendy (2000) introduced a con-
ceptual framework, which distinguishes instantaneous load,
peak load, accumulated load, average load, and overall load.
It seems that the notation of instantaneous load, which repre-
sents the dynamics of cognitive load over time, is especially
useful for monitoring the fluctuation trend so that free capac-
ity can be exploited at the most appropriate time to enhance
the overall performance in human-agent collaborations.

Modeling Cognitive Loads Using HMM

A hidden Markov model (HMM) (Rabiner, 1989) is a sta-
tistical approach to modeling systems that can be viewed as
a Markov process with unknown hidden parameters. The
hidden state variables are not directly visible, but influenced
by certain observable variables. Each hidden state has a
probability distribution over the possible observable symbols.
Therefore the sequence of observable states can be used to
make inference on the sequence of hidden states of a HMM.
A HMM is denoted by A = (N, V, A, B, ), where N is a set
of hidden states, V' is a set of observation symbols, A is a set
of state transition probability distributions, B is a set of obser-
vation symbol probability distributions (one for each hidden
state), and 7 is the initial state distribution. Hidden Markov
models have been widely applied in bioinformatics and tem-
poral pattern recognition (such as speech, handwriting, and
gesture recognition).

An intelligent agent being a cognitive aid, it is desirable
that the model of its human partner implemented within the
agent is cognitively-acceptable, if not descriptively accurate.
However, building a cognitive load model that is cognitively-
acceptable is not trivial. A HMM-based approach is used
in this study for several reasons. First, cognitive load has a
dynamic nature. As we mentioned above, being able to mon-
itor the dynamics of a human partner’s cognitive load over
time is very useful for an agent to proactively identify col-
laboration opportunities in human-centered teamwork. The
inference of the instantaneous cognitive load can be cast as
a temporal pattern recognition problem, which is especially
suitable to adopt a HMM.

Second, the HMM approach demands that the system be-
ing modeled (here, human’s cognitive capacity) has both ob-
servable and hidden state variables, and the hidden variables
should be correlated to the observable variables. As discussed
above, there is ample evidence supporting secondary task per-
formance as a highly sensitive and reliable technique for mea-
suring human’s cognitive load (Paas et al., 2003). We thus
can use the secondary task performance as observable sig-
nals to estimate the hidden cognitive load state. For example,
the secondary task performance can be measured in terms of
the number of items correctly recalled. According to Miller’s
7 £ 2 rule, the observable states will take integer values from
0 to 9 (assume it is 9 when the number of items correctly re-
called is no less than 9). Hence, the strong tie, as uncovered in
cognitive studies, between human’s cognitive load and his/her
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Figure 1: Shared Belief Map.

secondary task performance also justifies the use of a HMM
approach.

In the study reported below, we employed an experimen-
tal approach to collect realistic data of secondary task per-
formance in a collaborative setting. We then used the data
to learn HMM models of various number of hidden states,
trying to understand the properties of HMM models that are
acceptable for modeling human cognitive load.

Cognitive Task Design and Data Collection

To study the dynamics of cognitive loads when humans are
working in collaborative settings, we developed a system sim-
ulating a dynamic battlefield infosphere. A team can have
several team members; each of them has limited observability
(say, covering only a portion of the battlefield). The goal of
a team is to selectively share information among members in
a timely manner to develop global situation awareness (e.g.,
for making critical decisions).

Team members share information through a GUI with a
shared belief map as shown in Figure 1. A shared belief map
is a table with color-coded info-cells—cells associated with
information. Each row captures the belief model of one team
member, and each column corresponds to a specific informa-
tion type (all columns together define the boundary of the in-
formation space being considered). Thus, info-cell C;; of a
map encodes all the beliefs (instances) of information type
7 held by agent ¢. Color coding applies to each info-cell to
indicate the number of information instances held by the cor-
responding agent.

The concept of shared belief map facilitates the develop-
ment of global situation awareness. It helps maintain and
present a human partner with a synergy view of the shared
mental models evolving within a team. Information types
that are semantically related (e.g., by inference rules) can be
closely organized in the map. Hence, nearby info-cells can
form meaningful plateaus (or contour lines) of similar colors.
Colored plateaus indicate those sections of a shared mental
model that bear high overlapping degrees. In addition, the
perceptible color (hue) difference manifested from a shared
belief map indicates the information difference among team
members, and hence visually represents the potential infor-
mation needs of each team member.

We designed a primary task and a secondary task for the
human subjects. The primary task of a human subject is to
share the right information with the right party at the right
time. Every time step (about 15 seconds), simulated spot
reports (situational information) will be generated and ran-
domly dispatched to team members. An info-cell on a per-
son’s belief map will be flashed (for 2 seconds) whenever that
person gets new information of the type represented by that

cell. The flashed cells are exactly those with newly available
information that should be shared among teammates at that
time step. An info-cell is frozen (the associated information
is no longer sharable) when the next time step comes. Hence,
a human subject has to share the newly available information
with other team members under time stress. To share the in-
formation associated with an info-cell, a human subject needs
to click the right mouse button on the cell to pop up a context
menu, and select the receiving teammate(s) from the pop-up
menu. Because information is randomly dispatched to team
members, to each participant, the flashed info-cells vary from
time to time, and there can be up to 12 info-cells flashed at
each time step.

To choose an appropriate secondary task for the domain
problem at hand is not trivial, although the general rationale
is that the secondary task performance should vary as the dif-
ficulty of the primary task increases. Typically, a secondary
task requires the human subjects to respond to unpredictable
stimuli in either overt (e.g., press a button) or covert (e.g.,
mental counting) ways. Just for the purpose of estimating
a human subject’s cognitive load, any artificial task can be
used as a secondary task to force the subject to go through.
However, in a realistic application, we have to make sure that
the selected secondary task interacts with the primary task in
meaningful ways, which is not easy and often depends on the
domain problem at hand. Specific to this study, the secondary
task of a human subject is to remember and mark the cells
being flashed (not necessarily in the exact order). Secondary
task performance at step ¢ is thus measured as the number of
cells marked correctly at ¢t. The more number of cells marked
correctly, the lower the subject’s cognitive load.

While the experiment is designed in a collaborative setting
with a meaningful primary task, we here especially focus on
the secondary task performance. We would like to collect re-
alistic data of secondary task performance and use the data to
learn and understand the properties of HMM models of hu-
man cognitive loads. We randomly recruited 30 human sub-
jects from undergraduate students and randomly formed 10
teams of size three. We ran the simulation system 9 times
for each team and collected the secondary task performance
of each team member: the number of info-cells marked cor-
rectly at each time step. Each run of the experiment has 45
time steps. We thus collected 10 x 3 x 9 = 270 observation
sequences of length 45.

Learning Cognitive Load Models

Learning Procedure

With the collected observation sequences, we took a two-
phase approach. We first applied a window method to learn
HMMs from sub-sequences and then evaluated each learned
model with the original 270 observation sequences. Specif-
ically, we assume human cognitive load can be modeled by
HMMs with n hypothetical hidden states where 3 < n < 10.
To train a n-state HMM, we applied a window of width n on
the original observation sequences to extract sub-sequences
as training data. For example, to learn a 5-state HMM, a win-
dow of width 5 was used, which produced 270 x41 = 11,070
training samples.

The training samples then were fed to the Baum-Welch
algorithm (Rabiner, 1989) to learn HMMs. The training
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Figure 2: Each subfigure has top, middle, and bottom components, which plot the log-likelihoods of models after training, the
log-likelihoods in testing, and the standard deviation of the log-likelihoods in testing. It clearly indicates (1) Maxima of each
model space (from 3 to 10) form a 3-layer structure; (2) Better trained models lead to better testing log-likelihoods; and (3)
Better trained models incur lower deviations. Model space also varied: as the number of hidden states increased from 3 to 10,
the fraction of models at the middle and bottom levels reduced with the fraction of models at the top level increased.

process was terminated upon the convergence of its log-
likelihood. Given the possibility of convergence at local max-
ima, we randomly generated initial guesses of parameters
(A, B,m) and repeated 100 times for each hypothetical n-
state model. Consequently, we obtained 8 model spaces, each
has 100 HMMs with n hidden states (3 < n < 10). The top
component of each subfigure in Figure 2 plots ascendingly
the final log-likelihoods of the learned models of the corre-
sponding model space.

In the second phase, for each learned HMM, we used
the Forward procedure (Rabiner, 1989) to evaluate its per-
formance by computing the occurrence probabilities (log-
likelihoods) of the original 270 observation sequences, which
produced 270 log-likelihoods. The middle component of each
subfigure in Figure 2 plots, for each corresponding model
plotted in the top component, the mean of the 270 log-
likelihoods resulted from fitting (testing) the model with the
original observation sequences. The bottom components plot
the standard deviations of each model in fitting.

The Model Space of Cognitive Load

Each subfigure in Figure 2(a-h) has top, middle, and bottom
components, which plot the log-likelihoods of models after
training, the log-likelihoods in testing, and the standard de-
viation of the log-likelihoods in testing. It clearly indicates
that the model spaces with the number of hidden states rang-
ing from 3 to 10 share some common properties. First, each
model space (from 3 to 10) has a 3-layer structure, which
means the log-likelihood maxima are clustered in three levels
(models at the middle and bottom levels converged to local
maxima). Second, better trained models performed better in

Table 1: Means of the longest hidden-state jumps (LHSJ)
and mean fractions of transition pairs with stronger backward
jumps (FSB) for HMMs with states from 3 to 10.

states 3 4 5 6 7 8 9 10

LHSJ) 133 176 210 256 2.83 330 382 419
FSB 1.00 076 0.66 0.62 060 058 056 0.54

LHSJ =0.0906 + 0.407 states

testing: the trend of the log-likelihoods in fitting is consistent
with the trend of the log-likelihoods in training (as ordered
ascendingly in the top component). Third, better models pro-
duced lower deviation in fitting. Also, as the number of hid-
den states increased from 3 to 10, the fraction of models at the
middle and bottom levels reduced with the fraction of mod-
els at the top level (converged at global maxima) increased.
Extremely, most of the models in the space of 3-state HMMs
are ‘bad’ models, while most of the models in the space of
10-state HMMs are ‘good’ models.

Properties of ‘Good’ Cognitive Load Models

We may wonder whether there are any properties shared by
the ‘good’ models as appeared at the top layer of each model
space. We first examine B, the observation probability distri-
butions. There is a strong evidence that the B’s of models at
the top layer demonstrated more distinguishable peaks, com-
pared with those at lower layers which typically had indistin-
guishable peaks or mixed distributions. Figure 3(c) gives the
B of one 5-state model at the top layer.

There are several statistics to check on the model param-
eter A, state transition probability distributions. With only
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Figure 3: (a) An example 5-state HMM; (b) Transition probability distributions A; (c) Observation probability distributions B.

Table 2: For each state, the mean number of state transitions and the mean of initial state probability ;.

states 1 2 3 4 5 6 7 8 9 10
3 1.00/0.64  2.00/0.31  2.00/0.045
4 1.89/0.44  2.20/0.26  2.75/0.27 1.86/0.037
5 2.32/0.41 2.70/0.20 3.04/0.18 2.98/0.19 1.70/0.028
6 2.87/0.33  3.60/0.18 3.66/0.14 3.65/0.15 3.14/0.17 1.51/0.025
7 3.24/0.29 3.92/0.18 4.40/0.12 4.44/0.11 4.07/0.12 2.68/0.16 1.23/0.019
8 3.52/0.26  4.27/0.15 4.64/0.12 4.92/0.10 5.01/0.09 4.34/0.11 2.56/0.15 1.16/0.017
9 4.09/0.24 4.89/0.12 5.41/0.11 5.60/0.10 5.70/0.09 5.58/0.08 5.12/0.09 2.66/0.16 0.93/0.016
10 4.45/0.21 5.21/0.12 5.62/0.10 5.85/0.09 6.27/0.08 6.37/0.07 6.14/0.08 4.77/0.09 2.61/0.14 0.79/0.015

cell content: number of state jumps/m

top-layer models considered, Table 1 gives the means of the
longest hidden-state jumps (LHSJ) and the mean fractions of
transition pairs with stronger backward jumps (FSB). For ex-
ample, for HMMs with 5 states, on average state transitions
have jumps no more than 2.1 states, and of all the possible
state transition pairs (A;;, A;;) where 1 < ¢ < j < 5 and
state j represents a higher cognitive load than state i, 66%
have stronger backward transitions (4;; < Aj;). Of all the
models with states from 3 to 10, the means of LHSJ, rang-
ing from 1.33 to 4.19, linearly related to the number of states
with slope 0.407 ~ 2/5. Interestingly, all models have rel-
atively more transition pairs with stronger backward jumps.
This seems to suggest that humans can more easily recover
from than switch to a higher cognitive load state.

For each state and each model, Table 2 gives the mean
number of transitions and the mean of initial state probabil-
ity. For each category except models with 3 states, it seems
that the highest one (4-6) or two (7-10) states have much
few number of transitions than the other states. It may sug-
gest that humans, once become “overly” loaded, can not eas-
ily return to cognitively favorable states. The highest state of
each model category also assume extremely lower initial state
probability, and the lower states have relatively higher initial
state probability. This is intuitively true because humans sel-
domly get overloaded in the beginning. For each model cat-
egory, Table 2 also indicates such a trend: as hidden state
changed from low to high, the mean number of state transi-
tions increased to its maximum (in italic), while 7; decreased
to minimum (with the highest state ignored). This may indi-
cate that the more active a state is, the less likely a human can
be initially in that state.

The Number of Hidden States

A crucial question is, how many hidden states are appropriate
for modeling cognitive load using HMMs?
Figure 4(a) gives the Boxplot of likelihoods in fitting for all

Boxplot of log-likelihood in fitting Boxplot of mean log-likelihood in fiting (level 3 only)

log-likelihood : exp(y)
exp(y)
H

log-likelinood:
7 .

5 6 7 8 5 6 7 8
Number of Hidden States Number of Hidden States

(@) (b)
Figure 4: Boxplot of model log-likelihoods.

the models in each space, and Figure 4(b) gives the Boxplot
of likelihoods in fitting for top-layer models only. Fig. 4(a)
says that the model variance is small enough when the num-
ber of hidden states is no less than 4. Fig. 4(b) shows that
there is a linear improvement on the top-layer models as state
number increases. However, because the observable measure
of secondary task performance ranges from 0 to 9, models
with too many hidden states may overfit the given data. In
addition, the trained models with more than 8 states demon-
strated ‘strongly-connected’ sub-structures. Figure 5 gives a
top-layer model with 10 states, where links on the upper part
represent forward transitions and those on the lower part are
backward ones (state transition probabilities are visualized in
color densities). It is clear that this 10-state model can be re-
duced to a 5-state model if we view (1,2,3) and (4,5,6,7) as
two compound states.

Practically, it is better to pick from top-layer models with
7 states, which have a mean likelihood e~®!—only slightly
lower than 10-state models. It is also acceptable to choose
from the top-layer models with 5 states; indeed, the perfor-
mance could be as good as 7-state models if the best of 5-
state models were picked. In addition, there is ample evi-
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Figure 5: A 10-state model of cognitive load.

dence suggesting that human cognitive load is a continuous
function over time and does not manifest sudden shifts un-
less there are fundamental changes in tasking demands. If we
place a constraint on the state transition coefficients such that
no jumps of more than 3 states are allowed, then models with
5, 6, or 7 states are best choices (ref. Table 2). Moreover,
models with fewer states are more interpretable. Like the 5-
state model in Fig. 3, it is easier to assign meaningful names
to the hidden states.

In sum, with all the above factors considered, it seems we
can follow 7 &£ 2 rule to choose the number of hidden states
of a HMM-based cognitive load model. To examine the effi-
cacy of such a principle, we used 5-state HMM models and
conducted a study (Fan & Yen, 2007) involving two team
types: ten of the teams performed with cognitive load esti-
mation available from agents and ten teams with no such es-
timation. The result indicated that teams with load estimation
performed significantly better than teams with no load esti-
mation. The reason is that being able to estimate other team
members’ cognitive load allows them to share the needed in-
formation with the right party at the right time.

Conclusion

An agent empowered with a cognitive load model of its hu-
man peer can be beneficial in offering trustable autonomy and
unintrusive help. We used Hidden Markov Models to capture
cognitive load in a way that can be used in team contexts to
make predictions about other team members’ workload.

To develop realistic cognitive load models, we conducted
cognitive experiments to capture human’s observable sec-
ondary task performance and used that to train hidden
Markov models (HMM) with varied number of hypothetical
hidden states. The results indicate that each model space has
a three-layer structure, and it is suggested to choose models
with 7 &+ 2 hidden states. With all the constraints consid-
ered, it is recommended that HMMs with 5, 6, or 7 states
are best choices for modeling human cognitive load. Statisti-
cal analysis revealed that good models also share some com-
mon properties: (1) observation probability distributions have
distinguishable peaks for different states; (2) highest hidden
states have extremely lower initial state probabilities; and (3)
the longest state jumps are linearly related to the number of
states with a slope 2/5, and there are more transition pairs
with stronger backward jumps. These can be used in guiding
the selection of HMM-based cognitive load models.
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