
CONTEXT-CENTRIC NEEDS ANTICIPATION 1

Context-Centric Needs Anticipation Using

Information Needs Graphs

Xiaocong Fan, Rui Wang, Shuang Sun, John Yen

School of Information Sciences and Technology

The Pennsylvania State University

University Park, PA 16802

{zfan,rwang,ssun,jyen}@ist.psu.edu

Richard A. Volz

Department of Computer Science

Texas A&M University

College Station, TX 77843

volz@cs.tamu.edu

Keywords: Multi-Agent Systems, Teamwork, Information Needs, Contexts

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 2

Abstract

Effective agent teamwork requires information exchange to be conducted in a proactive, selective,

and intelligent way. In the field of distributed artificial intelligence, there has been increasing number of

research focusing on need-driven proactive communication, both theoretically and practically. Among

these works, CAST has realized a team-oriented agent architecture where agents, based on a computa-

tional shared mental model, are able to anticipate teammates’ information needs and proactively deliver

relevant information to the needers in a timely manner. However, the first implementation of CAST

takes little consideration of the dynamics of the anticipated information needs, which can change in

various ways as the context develops. In this paper we describe a novel mechanism for organizing and

managing the “context” of information needs. This allows agents to dynamically activate and deactivate

information needs progressively. It has been shown that the two-level context-centric approach can

enhance team performance considerably.

I. I NTRODUCTION

Studies in cognitive science have shown that human team members tend to proactively share

new information to achieve their joint goals [1], [2], [3]. “Proactive information delivery”—

sharing relevant information without being asked—has been identified by some psychologists

[4], [5], [6] as a key characteristic of effective human teams. This has been motivating researchers

in Multi-Agent Systems field to also consider empowering software agents with the capability

of proactive information delivery [7].

Proactive information delivery is important in multi-agent systems because effective teamwork

relies on effective communication, which plays an essential role in dynamic team formation [8],

in coordinating shared activities [9], [10], [7], and more theoretically, in the forming, evolving,

and terminating of both joint intentions [11] and shared plans [12].

Researchers in cognitive science have tried to tie proactive information delivery to the capabil-

ity of anticipating others’ future information needs based on certain shared mental models among

team members [13]. Yen, Fan, and Volz [14] have formalized the notion of information needs

and investigated the classification of information needs typically emerging in agent teamworks.

As they pointed, information needs can be derived from the knowledge of multi-agent infor-

mation dependence [15] regarding future physical or epistemic commitments (i.e., activities or

intentions). Although information dependence is very important for supporting social reasoning

in multi-agent cooperations, the existing researches on dependence theory or framework (e.g.,

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 3

[16], [7], [17], [18]) have virtually ignored the issue of dependence dynamics, assuming the

models of dependence relations are fixed once established. However, oftentimes, the notion of

information needs is context-dependent: the collection of information an agent needs to consider

may change over time. It thus indicates that agents in a multi-agent system ought to track the

dynamics (contexts) of others’ information needs in order to offer timely help without disturbing

the recipients with information no longer relevant to their activities.

CAST (Collaborative Agent architecture for Simulating Teamwork) is a teamwork model

focusing on understanding proactive information exchange among teammates based on shared

teamwork processes [7]. In the first implementation of CAST [19], [7], information needs

are derived from a fully decomposed shared team plan and stored in a data structure called

information-flow-table (IFT). Such a context-insensitive management of information needs is

significantly limited in effectively tracking the dynamics of others’ information needs. And,

as we mentioned above, this can introduce unnecessary overhead, which may heavily affect

the performance of teams working under time pressure. For instance, agents may keep sharing

irrelevant information while delaying or neglecting of sending what the receiver badly needs.

Team performance could suffer more from the IFT management of information needs as team

complexity increases; this is especially true for agent teams working in information intensive

domains like Network-Centric Warfare [20].

To enable agents to communicate in a more intelligent and selective way, a better mechanism

for managing the dynamic activation and deactivation of teammates’ information needs is highly

needed. The intent of this research is to explore and evaluate such a mechanism. The rest of

the paper is organized as follows. We next clearly define the problem under our consideration.

In Section II we give an overview of the CAST architecture. We set the stage in Section III by

outlining our approach and giving an example for illustrating concepts in ensuing sections. The

technical details of the context-centric mechanism and information-needs-graphs are covered

in Section IV. In Section V we report the experiments of evaluating the new management

mechanism. We compare our approach with the relevant work in the literature in Section VI,

and finally conclude in Section VII.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 4

p
p

O1

r

q

d

O4

O2
 O3
 O7
 O8

O6

O5

OR

AND

p

Fig. 1. Dependence changes as work proceeds

A. Problem Definition

Consider the abstract workflow shown in Fig. 1, where rounded boxes represent task-related

operations or control-points (AND point, OR point). The activities involved in the branches

leaving from an AND point can be done parallelly, and probably by different groups of actors,

but they have to be finished before the actors can proceed to the common successive operation

(e.g., O7 in Fig. 1) of all the branches. The actors entering an OR point can proceed to the

common successive operation of the branches of the OR point whenever the activities in one of

the branch have been completed.

It is a typical treatment in AI that an operation in a plan can be associated with certain

constraints—some describes preconditions for executing the operation, some describes under

what situation the execution must be terminated. Here, we assume each operation of a team

process (e.g., Fig. 1) may have associated preconditions and termination conditions, and each

OR point may have associated preference conditions (for dynamically choosing a workable

branch). In Fig. 1, the information dependences derived from the constraints (represented as

predicates) of an operation are clustered in an oval.

In complex situations, the collection of information dependence that an agent needs to consider

can change as its activity proceeds. In particular, an agent no longer needs to consider dependence

r associated withO1 after it is done (assuming all the other operations have nothing to do with

r). When an agent chooses a specific branch of an OR point (e.g.,O5), those dependences

associated with the other branches (e.g.O4) should be out of concern. Of course, it would be

worthwhile for an agent executingO6 to consider those dependences associated withO2 andO3

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 5

because another agent may be waiting for help (in this example,d depends onp). To complicate

the issue further, each operation may be a complex subprocess in itself. Then, collecting the set of

information dependences that reflects the current work progress could involve two-dimensional

exploration. In this paper, we will introduce the notion of information-needs graphs as a means

to organize and progressively activate/deactivate others’ information needs.

In general, relevance is a matter of degree, and research on information relevance could be

centered on utility relevance, semantic relevance, statistical relevance, etc. In this paper, however,

we only consider logical relevance in the sense that whether or not a piece of information is

relevant to the execution of a certain task (or the fulfillment of a commitment). In other words,

we are concerned about whether or not a piece of information is useful in the evaluation of

the constraints associated with a task. Because task constraints are represented as information

needs in terms of first-order formulas, in the following descriptions, we also interchangeably say

“information I ′ is relevant to information needN ”. We leave the degree of relevance open for

future work. But we do consider both direct relevance and indirect relevance. InformationI(~t) is

directly relevant to needN(~x) iff I ≡ N and the vector of constants~t can be successfully unified

with variables in~x. InformationI(~t) is indirectly relevant to needN(~x) iff information regarding

N can be derived fromI(~t) together with other kinds of information using certain inference rules.

For instance, suppose an agent use the information about enemy locations and moving directions

to judge threat levels:threatLevel(?e,High) ← inActiveZone(?e) ∧ Direction(?e, Close).

If threatLevel(?e, ?x) represents an information need of an agentA, then information like

inActiveZone(e12) is indirectly relevant to whatA needs. When we say “irrelevant information

(with respect to an agent)” we mean the information is in no way (neither directly nor indirectly)

relevant to any of the agent’s information needs, which, as we claimed above and address bellow,

can change over time.

II. BACKGROUND: THE CAST SYSTEM

CAST is a teamwork model that enables software agents to effectively track teamwork pro-

cesses, anticipate teammates’ potential information needs, and proactively share information

relevant of others’ needs [7], [21]. Figure 2 shows the key components of the CAST agent

architecture, where

• Team process trackingallows agents to monitor and adapt to the progress of team activities;

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 6

Team Process

Tracking

Decision

 making

Shared

Mental Model

Individual

Mental Model

Proactive Info.

 Delivery

Reasoning

Engine

CAST Kernel

Goal

Management

Fig. 2. The CAST Agent Architecture

• The goal managementmodule is used to manage active goals being or to be pursued;

• Thedecision-making moduleis used to determine the next course of action and whether/how

to help other teammates with their information needs;

• The Reasoning engineexecutes a standard sense/decide/act loop, initiate collaborations

(e.g., dynamically recruiting team members) among teammates based on the shared mental

state and individual mental state;

• The Proactive Information Deliverymodule is responsible for identifying opportunities to

satisfy teammates’ information needs;

• The Individual Mental Modelstores those mental attitudes privately held by individual

agents, including individual expertise, models of teammates, etc;

• The Shared Mental Modelstores the knowledge and information that are shared by all

team members, including team structures and team processes.

We next briefly describe how team process tracking, proactive information delivery, and the

shared mental model are implemented in CAST. Details can be referred to [21].

A. Tracking Teamwork Process

In CAST, team plans, team structures and other teamwork knowledge are specified in MALLET—

a Multi-Agent Logic Language for Encoding Teamwork [22]. A team plan is composed of

preconditions, effects, termination conditions, and a procedural description of the process. The

preconditions of a plan, represented by a logical conjunction, prescribe a necessary condition

(pre-requisite resource and information) under which the plan can be performed. The effects, also

represented by a logical conjunction, describe what must hold after the plan is done successfully.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 7

Two types of termination conditions can be specified for a plan: success conditions (the plan

should be terminated if the conditions become true), and failure conditions (the plan should be

terminated if the conditions become false). The process of a plan describes the procedure of

how a team accomplishes a task by using plan-invocation statements and constructs such asseq

(sequential),par (parallel),if (conditional),while (iterative)choice(optional), etc. We will give

an example team profile in Section III to show how team plans are structured.

To facilitate dynamic reasoning and monitoring, at compile time the embedded MALLET

compiler transforms team plans into PrT nets (Predicate-Transition Nets), which are organized

hierarchically so that agents can explore the team process at an appropriate level of details.

Figure 3 illustrates how the hierarchical PrT nets work. In the net at the top layer the two

places after transitionT6 are currently holding task tokens. The sub-net betweenT6 andT7 are

transformed from a parallel statement in the original team plan: the branchworkOnFire(?fire)

is only firable for firefighter agents while the branchrescueOnFire(?fire) is only firable for

rescue agents. Suppose the net reflects the current mental state of a firefighter agent and the

preconditions ofworkOnFire are satisfiable wrt. the agent’s belief base, the agent will fire

the operationworkOnFire(?fire) by pushing the net at the top layer into an internal process-

stack and transferring control to the net at the middle layer. Similarly, in case that the token

configuration of the net at the middle layer is as shown in Figure 3, the firing of the operation

extinguishF ire(?fire) will result in the transfer of control to the PrT net at the bottom layer.

CAST agents in a team are initially equipped with the same MALLET input, they thus will

have the same set of PrT Nets, which establish a shared picture of the static process to be

followed by team members. The team plans, accordingly the PrT nets, can be partial in the

sense that certain roles (agent variables) need to be determined at run time. This to some extent

is similar to the idea of incomplete recipes in the SharedPlans theory [23].

CAST agents are required to inform other teammates of their progress at critical points along

the active team process. For instance, the agents to be involved in a team operator have to be

all ready (by sending synchronization messages) before executing the operator; all the involved

agents will be informed of the decision on the next course of action immediately after an

alternative at a choice point has been chosen by some team member. By allowing agents to

exchange information regarding their teamwork progress, they can have a global picture of the

dynamic progress of the committed team activity. This enables agents to determine how their

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 8

T1
 T3

(
keepMonitoring
 false)

T2

(
keepMonitoring
 true)

T4

(
emergingFire
 ?fire)

T5

(not (
 emergingFire
 ?fire))
 T6

rescueOnFire
 (?fire)
 workOnFire
 (?fire)

null step

T7

Places

Transitions

Places with token

T1
 moveToFire
 (?fire)
 extinguishFire
 (?fire)

T1

switchToFire(?fire2)

T3

(quentched ?fire)

T2

(not (quentched ?fire))

T4

(abandon ?fire)

T5

(not (abandon ?fire))

extinguish(?fire)

Fig. 3. Process Hierarchy–An Illustration

individual actions fit together, to act proactively to achieve coherent teamwork, and to anticipate

the opportunities of offering help.

The hierarchical organization of team processes carefully separates domain independent as-

pects from domain dependent ones. This allows teamwork tracking to operate only at the needed

level of detail.

B. Information Needs and Proactive Information Delivery

Information needs are represented as predicates annotated with a list of agent names; that

means those agents need to be informed of the information described by the predicates. CAST

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 9

supports two types of information needs: action-performing information needs and plan-terminating

information needs.

Prior to performing a plan or action, an agent typically needs to check whether the plan or

action is both physically and epistemically feasible [24]. The epistemics feasibility is typically

reflected in the preconditions of a plan or action. For this reason, the information needs generated

from action preconditions are calledaction-performing information needs.

The execution of a MALLET plan may be terminated if (a) the expected effects (i.e., goal)

of the plan is already achieved; (b) the execution of the plan cannot proceed further (i.e., failed

in executing the embedded actions or plans); or (c) the execution of the plan becomes irrelevant

(i.e., the goal is abandoned). This conforms to the Joint Intention theory [25], which requires

that all the agents involved in a joint persistent goal (JPG) take it as an obligation to inform other

agents regarding the achievement or impossibility of the goal. CAST agents respond to these

three cases differently. In case (a), the agents simply proceed to pursue the next team activity;

in case (b), the agents will try to choose some other alternative to re-attempt the goal; in case

(c), the agents will switch their attentions to a new joint goal. To do this, all the agents should

commit to letting others know whenever they detect a team activity is terminated or is about to

terminate. The detection of plan termination is done by periodically checking the truth values

of the effects and termination conditions specified for a plan. The information needs generated

from plan effects and termination conditions are calledplan-terminating information-needs.

The proactive information delivery behavior is realized in the DIARG (Dynamic Inter-Agent

Rule Generator) algorithm [7], [19]. DIARG allows an agent to initiate communications without

being asked based on a data structure called Information-Flow Table (IFT), which is a collection

of tuples of the form(info-needs, potential-info-needers, potential-info-providers)generated

offline by analyzing the shared team plans and the roles each agent can play in the plans.

Whenever an agent acquires new information, the agent will check whether there is a match

between the information and the needs in its IFT; if so, the agent will further decide whether

to help the needers based on certain criteria. For instance, an agent will not send a piece of

information to agentB if it is highly likely that agentB itself can observe the information.

Also, no communication is carried out if the agent believes another agent, sayC, has a better

position to provide the information toB.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 10

C. The Shared Mental Model

Both anticipation of information needs and proactive information delivery are enabled by

the computational shared mental model implemented in CAST. The notion of shared mental

models is a hypothetical construct that has been put forward to explain certain coordinated

behaviors of human teams (e.g., [13]). A shared mental model not only establishes a mutual

awareness among team members, it also requires the involved agents to commit to maintaining

the mutual awareness. In other words, all the agents in a team should re-establish the “shared”

status whenever disagreements occur. Joint intentions [25] are a special kind of shared mental

models, where an agent, who has a joint intention with others, needs to inform them whenever

it detects the goal is already achieved, becomes irrelevant or unattainable.

The shared mental model (SMM) implemented in CAST has four components: team struc-

ture, domain knowledge, information-flow table (IFT), and team processes. Theteam structure

component captures those knowledge specifying team (sub-team) memberships, abstract roles,

and agent-role relationships. Thedomain knowledgecomponent contains domain independent

(e.g., communication protocols) or dependent (e.g., domain expertise, inference rules) common

knowledge. The observability of team members can also be shared as common knowledge to

enable them to approximately reason about others’ mental state. Shared team processes in the

SMM of each CAST agent actually refer to the combination of two parts: the static structure and

the dynamic progress (i.e., the token configuration of PrT nets) of team processes (cf. Section II-

A), which together provide a common approximate understanding of the status of the committed

team activity. As we have mentioned, IFT is a table-like structure that records information-flow

relationships. The potential information needers and potential information providers of each entry

in IFT may contain uncertainties (i.e., there may exist agent variables to be determined at run

time); such uncertainties in the IFT can be resolved as the team proceeds along the shared

processes.

III. SETTING THE STAGE

The first implementation of CAST [7] adopted an IFT-based approach to manage teammates’

information needs. The proactive information delivery behavior enabled by IFT is virtually similar

to static subscribe: agents at compile time implicitly subscribe their information needs from

potential providers, who then at run time proactively send the relevant information whenever

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 11

it becomes available. The IFT-based approach has exhibited at least two limitations. First, the

IFT-based approach only supports naive matching. As team complexity scales up, there may

exist dependence relationships among information needs (e.g., hierarchical decomposition of a

high-level information needs into many lower-level ones) and such dependence knowledge may

distributed among a group of agents. Being able to leverage the dependencies among information

needs, an agent can share information at multiple levels, and even exchange information that

only partially matches with teammates’ information needs. This limitation has been addressed

using the notion of distributed inference trees [21].

The second limitation of the IFT-based approach is that the notion of information needs isper

secontext-dependent, but IFT does not track the shift of contexts. The dynamics of information

needs, in particular, may lie in at least three aspects:

1) A choice point (specified using thechoiceconstruct) in MALLET is composed of several

branches (potential ways) to achieve the goal associated with the choice point. Intuitively,

for a team process with embedded choice points, only those information-needs associated

with the selected branches should be activated. The relevance of such information needs

cannot be determined until after the involved agents have selected a branch;

2) The already executed part of a team process may never be re-invoked again. Thus, the

information needs associated with those “inactive” part should be removed out of the

agents’ concern;

3) A team or an agent may dynamically select goals to pursue (e.g., agents may terminate or

suspend the current process when facing unexpected difficulties). The information-needs

considered in pursuing one goal can be very much different from those considered in

another. The agents should switch their attentions as they switch their goals (processes).

Although it has been shown that proactive communication based on the IFT approach can enhance

team performance [7], lacking the ability to effectively track the relevance of information needs

could significantly degrade the scalability of CAST. Also, the context-insensitive management

of information-needs offered by IFT may induce agents to satisfy others’ information needs that

re no longer relevant, while delaying or neglecting of sending information that is badly needed.

Of course, the needers could dynamicallyunsubscribetheir information needs when they are

no longer relevant. However, this will bring in other communication cost in cases where agents

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 12

need to switch their attentions back and forth, or in cases where there is a large number of

needers of the subscribed information.

To address this limitation, we introduce a richer data structure called Information-Needs-

Graph (ING) in Section IV, and propose a context-centric approach (ING-based) so that agents

can flexibly conductk-depth forward anticipation of others’ information needs by taking full

advantage of the shared teamwork progress.

For illustration purpose, we next give a slice of the team profile for a fire-rescue domain. The

complete profile includes specifications for team structure, operators, and domain-dependent

inference rules, which are omitted here for irrelevance. The readers can refer to [22] for the

details of the syntax and semantics of MALLET.

• (plan fightBuildingFire ()

(process

(while (cond (gameOver false))

(if (cond (emerging-fire ?fire))

(do wholeTeam workOnFire ?fire)

(noOp)))))

• (plan workOnFire (?fire)

(process

(seq

(do wholeTeam moveToFire ?fire) ;phase I

(par ;phase II

(do Ambulance-team rescuePeople ?fire)

(do Fighter-team extinguishFire ?fire)))))

• (plan rescuePeople (?fire)

(term-cond (people-alive ?fire 0)(out-of-control ?fire))

(process

(while (cond (not-quenched ?fire)(not-abandoned ?fire))

(if (cond (need-escape ?fire))

(abandon ?fire) ;else

(rescue ?fire)))))

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 13

• (plan extinguishFire (?fire)

(process

(choice

((pref-cond (has-chemical false))

(do self extinguishFireM1 ?fire))

((pref-cond (has-chemical true))

(do self extinguishFireM2 ?fire))))

• (plan extinguishFireM1 (?fire)

(term-cond (people-alive ?fire 0)(out-of-control ?fire))

(process

(while (cond (not-quenched ?fire)(not-abandoned ?fire))

(if (cond (need-escape ?fire))

(abandon ?fire) ;else

(extinguish ?fire)))))

In this example, the fire-fighting team, composed of a subteam of firefighters and a subteam

of ambulance units, needs to respond to emerging fires in a virtual city. An agent’s response to

a fire is divided into two phases: move to the place catching fire, and fulfill its role at the fire

place. The two subteams work parallelly in phase II: firefighters extinguish fires while ambulance

units try to rescue injured or trapped people from the buildings on fire. In phase II, to extinguish

a fire, the firefighters can choose from two different ways, depending on whether the buildings

on fire contain chemical materials that can release toxic gases. The team members will abandon

the current fire and switch to another if there is no more people alive in the buildings or the fire

is out of control.

IV. T HE CONTEXT-CENTRIC APPROACH

To endow CAST agents with the ability to dynamically manage and effectively anticipate

others’ information needs, we employ a flexible mechanism leveraging the shared understanding

of the teamwork progress. The basic idea is to reduce the amount of information needs an agent

needs to pay attention to at a given time. There are two options to do so. The first way is to

utilize the hierarchical PrT Net representation of teamwork processes to reason about the validity

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 14

of others’ information needs. Particularly, the start transition (e.g.,T1 in Figure 3) of a PrT net

can be linked to a table that stores the information needs relevant to the termination conditions

of the corresponding plan and the pre-conditions of all the sub-plans at the immediate next

level (i.e., not considering the pro-conditions of the subplans of subplans). This can significantly

reduce the amount of information needs an agent needs to monitor because the approach leads to

a level-specific inference of teammates’ information needs. However, the drawback is two-fold.

First, process at leveli has to be terminated if some process at level abovei is terminated.

Thus, an agent active at process-leveli should consider all the plan-terminating information

needs associated with process-levels abovei. However, CAST uses a process-stack to manage

the trace of plan execution. To consider the information needs at a higher process-level, an

agent has to establish logical links between PrT nets and sub-PrT nets. The existence of iterative

statements in a team process will further complicate the reasoning.

Second, such a level-specific approach is too restricted in that it does not allow an agent to

proactively help its teammates with their information needs at a deeper level (i.e., belowi).

Formally, at leveli whereP i is the plan under concern, letN i(P i) denote the set of information

needs considered by a groupGi of agents who enteredP i (an information needn is in N i(P i)

iff n is a need of some agent inGi with respect to planP i). Now, supposeGi splits into two

subteamsGi+1
A andGi+1

B , who respectively trigger plansP i+1
A andP i+1

B at level i + 1. We have

the following relations:

Information needs considered by agents inGi: N i(P i),

Information needs considered by agents inGi+1
A : N i(P i) ∪N i+1(P i+1

A),

Information needs considered by agents inGi+1
B : N i(P i) ∪N i+1(P i+1

B).

Then, agents inGi+1
B cannot help the needs of agents inGi+1

A , and vice versa. As illustrated

in Figure 4, forward anticipation at the same level reflects intra-team proactive information

exchange (PIE), while in-depth anticipation reflects cross-team PIE. We thus need a mechanism

that allows agents consider both intra-team and cross-team PIE. One important benefit of such

a “look ahead” capability is to allow an agent not involved in executing a subplan to be able

to help other teammates being involved in the subplan regarding their information needs. It is

worthwhile to point out, however, that a “k-level look ahead” activation of information needs

does not include activating those information needs associated with subplans in a branch of a

choice point. The information needs associated with a choice branch will be activated only after

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 15

Level depth

Step forward
1
 2
 3
 n

1

2

3

k

Fig. 4. 2-dimensional activation of information needs

the branch is selected.

To avoid the above limitations, we propose a context-centric needs activation/deactivation

mechanism, which uses a tree-like structure-information needs graph (ING) to manage the

activation/deactivation of information needs. ING captures the expansion of the task structure

at every level. However, an ING is not simply a re-organization of the whole collection of PrT

nets; rather, it offers a data structure that allows agents to effectively manage the dynamics of

teammates’ information needs at desired levels (by tracking the temporal relations of information

needs). Even though INGs and PrT nets are separate and used for different purposes (INGs

are used for managing the contexts of information needs while PrT nets are used for tracking

the teamwork progress to better coordinate team members’ behaviors), they do have run-time

connections. The reasoning engine of CAST ensures that the dynamic status of teamwork

processes be reflected in the corresponding INGs. It is worth paying this extra cost because

knowing the current focuses of team members will help an agent refine the validity of their

information needs so that it can better serve their needs and avoid initiating unnecessary inter-

agent interactions as far as it can.

In the rest of this section, we explain the data structure and the algorithms for collecting active

information needs of teammates.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 16

A. The Generation of INGs

An ING may involve four kinds of nodes. AP -node,W -node,C-node, andH-node represent

a plan invocation, an iterative statement, a choice statement, and a parallel statement in a team

plan, respectively. Two relations are defined over these nodes:sub-plan relation andsibling-

plan relation. We usePp to denote aP -node corresponding to planp. An ING is generated by

transforming team plans according to the following rationales:

1) An iterative statement with indexi (counted start from 0 according to the order of occur-

rence) in planp is represented as aW -nodeW i
p . We choose to explicitly represent the

iterative points because this facilitates the reasoning regarding when to deactivate those

information needs inside a loop.

2) A choice statement with indexj (counted start from 0 according to the order of occurrence)

in plan p is represented as aC-nodeCj
p . Each choice point can specify several potential

ways to achieve a goal. Those information-needs emerging from the selected branch should

be activated as soon as a team or an agent makes a choice. The explicit representation

of choice points in an ING allows agents to selectively activate those information needs

associated with the chosen branch without necessarily considering those needs within other

branches.

3) A parallel statement with indexk (counted start from 0 according to the order of oc-

currence) in planp is represented as anH-nodeHk
p . We choose to explicitly represent

the parallel points because this offers the flexibility that an agent can choose whether to

consider the information needs of other sub-teams that are performing activities different

from what the agent’s own sub-team is pursuing.

4) Sequential statements (seq) and conditional statements (if) in plan p are captured by

the sibling-plan relation. Two nodesN1 and N2 have asibling-plan relation means the

corresponding statement ofN1 will be executed immediately before the corresponding

statement ofN2. Both nodes that correspond to the two alternatives of anif statement

havesibling-planrelations with the nodes corresponding to the statements before and after

the if statement. This is because which alternative will be chosen can only be determined

when the execution reaches that point.

5) A plan-nodePp hassub-planrelations with each of theW -nodesW i
p, C-nodesCj

p , H-

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 17

nodesHk
p , and all theP -nodes corresponding to plan-invocations in planp but not within

the scope of any iterative, choice, or parallel statements inp.

6) Each P -node is associated with information about (a) the potential or assigned doers

of the corresponding plan, (b) the pre-conditions for performing the plan, and (c) the

termination conditions of the plan. Both the preconditions and termination conditions can

be organized as an AND/OR tree-like structure to endow CAST agents with the ability to

infer teammates’ indirect information needs.

7) EachC-node is associated with information regarding the preference conditions specified

for the branches of the corresponding choice statement. The preference conditions can also

be organized as an AND/OR tree structure to facilitate another level of reasoning.

At compile time , an ING is generated for each top-level team plan specified in MALLET (this

is done in parallel with the generation of PrT nets). To generate an ING, starting from a top-level

team plantp, the ING generator first creates aP -node for tp, and then applies the algorithm

unfoldNode() recursively to eachP -node to be unfolded. To terminate this generation process,

a P -node will be skipped if the sameP -node is already occurred in the trace alongsub-plan

relations from the root node (this occurs when a plan is invoked recursively).

Before giving the algorithm for generating INGs, we define two functions. Let function

lastP lans(S) be defined as:




S if S is a plan invocation, or awhile (choice, parallel) statement,

lastP lans(Sn) if S = (seq S1 · · ·Sn),

lastP lans(B1) ∪ lastP lans(B2) if S = (if (cond .) B1 B2).

FunctionfirstP lans(S) be defined as:




S if S is a plan invocation, or awhile (choice, parallel) statement,

firstP lans(S1) if S = (seq S1 · · ·Sn),

firstP lans(B1) ∪ firstP lans(B2) if S = (if (cond .) B1 B2).

Algorithm 1: /*Generating ING from MALLET*/

unfoldNode(Nodesn)

0. If sn is a P node, and aP node same tosn is already occurred in the trace:return

1. Let ls be the plan or statements referred to by nodesn

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 18

2. wPoints:= get all thewhile statements in the scope ofls

3. cPoints:= get all choicestatements in the scope ofls

4. hPoints:= get all par statements in the scope ofls

5. subP lans:= get all sub-plans invoked in the scope ofls

excluding those in (wPoints ∪ cPoints ∪ hPoints)

6. If (subP lans ∪ wPoints ∪ cPoints ∪ hPoints == ∅): return

7. For eachsp in subP lans

create aP -Node forsp and make it son ofsn

8. For eachwhile statementws in wPoints

create aW -Nodewn for ws and makewn son ofsn

unfoldNode(wn)

9. For eachchoicestatementcs in cPoints

create aC-Nodecn for cs and makecn son ofsn

unfoldNode(cn)

10. For eachpar statementps in hPoints

create aH-Nodepn for ps and makepn son ofsn

unfoldNode(pn)

11. Establish sibling relations:

if (seq · · ·S1 S2 · · ·) occurs in the scope ofls

the nodes corresponding to plans infirstP lans(S2) are siblings of the nodes

corresponding to plans inlastP lans(S1)

if (while (cond .) S) occurs in the scope ofls

the node representing this while statement is sibling of the nodes corresponding

to plans inlastP lans(S).

Figure 5 gives the ING generated by the ING generator for the fire-fighting example given in

Section III.

Analytically, compared with the first approach discussed in the beginning of this section,

this ING-based approach offers two additional benefits. First, the ING gives an abstract global

picture of the temporal relations of information needs and puts teammates’ information needs in

an appropriate context that changes as the team process evolves. Second, as we already noted, if

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 19

W1

fightBuildingFire

P2
 P3
workOnFire
 noOp

P1

P4

P5

moveToFire

P6
rescuePeople
 extinguishFire

W2

P7
 P8
abandon
 rescue

C1

P9
 P10

W3

P11
 P12

extinguishFireM1
 extinguishFireM2

abandon
 extinguish

Plan Node

Current Node

sub-plan relation

next sibling plan relation

P

W
 While Node

C
 Choice Node

H1

H
 Parallel Node

Fig. 5. An Example Info-Need Graph: Attention partitioned by work trace

a complex team plan can be decomposed into a task structure involving many layers of subplans,

it will be too costly for an agent to monitor every pieces of information that may be needed by

teammates at every levels of the task hierarchy. The ING-based approach offers the flexibility

in achievingk-level in-depth anticipation. Whenk is set to 1, CAST agents will only consider

those information needs at one process-level, without considering those in the embedded sub-

processes. Whenk is set todepth(ING), the depth of ING, CAST agents will consider all

the information needs at every level of details. Such adjustable anticipatability can significantly

enhance the scalability of CAST in anticipating and managing teammates’ information needs.

B. Collecting Active Information Needs

INGs are generated offline but are used at run time to collect teammates’ active information

needs, leveraging the information about the current teamwork progress. For each ING, each agent

dynamically maintains a collection of nodes marking the current work progress. The collection

of ‘working nodes” of an ING is constantly updated to reflect an agent’s knowledge of the

changing teamwork progress; the working nodes are then used as a context to temporally cut

away inactive information dependences.

As shown in Fig. 5, the two filled nodes are the current working nodes, each reflecting the work

progress of one of the two parallel activities. A ‘working trace’ of an ING refers to the path from

the root node of the ING to a working node. For example, the path from nodefightBuildingFire

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 20

to nodeextinguishFireM1is a working trace. An agent’s attention about others’ information

needs can be partitioned by a working trace. Those information needs associated with the nodes

(and the subtrees) on the left (wrt. the sibling relation) of a working trace are past attentions

(e.g., the nodemoveToFireand its subtree); those on the right of a working trace are what should

be considered. The existence of H-nodes in an ING means more than one subteam may work on

different processes parallelly. In such cases, to encourage cross-team helping behaviors, those

associated with all the son nodes (and the subtrees) of an H-node ought to be considered.

The collection of nodes that are under an agent’s consideration (excluding those on the left

of a working trace) can be further partitioned into three categories:

• “trace” nodes: those nodes appeared in the working trace;

• “uncertainty” nodes: those that are sons of aC-node. An uncertainty node needs to be

explored later when it is actually chosen; and

• “to-do” nodes: all others except trace nodes and uncertainty nodes.

A node can change its status as team activities proceed: some uncertainty nodes can be

activated, while some active nodes may become deactivated.

Given a working node, Algorithm 2 is used to collect teammates’ active information needs

relative to the current teamwork progress. Algorithm 2 adopts1-level in-depth anticipation. The

rationales implemented in Algorithm 2 are as follows.

1) Nodes left of the working trace are out of concern. This is reflected in clause 1 of

getRelevantNeeds(), where the nodes before the trace nodeX along the sibling-plan

relation are neglected;

2) An uncertainty node under aC-node is not considered until after the branch is chosen.

This is reflected in Algorithm 2, where there is no treatment in clause 5 similar to clause 7.

This is also reflected in proceduregetNodes(), where in case P-Nodes are to be collected,

the search is cut upon reaching a C-Node. Since there is no sibling relation among the

sons of a C-node, no other branches except the chosen one on the work trace are taken into

consideration. For instance, suppose in Figure 5 where an ambulance agent only considers

the rescuenode to be the current node. When collecting firefighters’ information needs,

the ambulance agent will not consider those associated with nodesextinguishFireM1or

extinguishFireM2or their sub-nodes.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 21

3) All the branches of a parallel statement are considered, this is reflected in clause 6 of

getRelevantNeeds(). For the example in Figure 5, suppose in addition to knowing the

progress of its own subteam (i.e., the ambulance team), an ambulance agent also knows

the progress of the fire-fighting team (i.e.,extinguishFireM1is the current node of the fire-

fighting team). The ambulance agent can neglect firefighters’ information needs associated

with extinguishFireM2and its sub-nodes;

4) All the nodes in the scope of awhile statement are considered (because they might be

executed for an indefinite number of iterations); this is reflected in loopB.

Algorithm 2: /*Collecting Active Information Needs Using INGs */

getNodes(NodeList:NL, NodeTypeNT) return NodeList

List = ∅
IterateX over Nodes inNL

IF X is of typeNY

List.add(X)

IF X is a W-Node or H-Node

setN ={Y |Y is a Node of typeNT accessible fromX alongsub-planrelation

where only W-nodes or H-Nodes occur in the trace toY }
List.addAll(setN)

return List

getNeeds(NodeList:NL): return NeedsList

NList = ∅
pNodes = getNodes(NL, P-Node)

NList.addAll(∪P∈pNodespre(P)) //pre(P) returns the preconditions ofP

cNodes = getNodes(NL, C-Node)

NList.addAll(∪C∈cNodespref(C)) //pref(C) returns the preference conditions ofC

return NList

getNeedsA(NodeList:NL): return NeedsList

NList = ∅

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 22

pNodes = getNodes(NL, P-Node)

NList.addAll(∪P∈pNodespre(P)) //pre(P) returns the preconditions ofP

NList.addAll(∪P∈P∈pNodesterm(P)) //term(P) returns the termination conditions ofP

cNodes = getNodes(NL, C-Node)

NList.addAll(∪C∈cNodespref(C)) //pref(C) returns the preference conditions ofC

return NList

getRelevantNeeds(ING ing, Nodecur): return NeedsList

Needs =∅
traceNodes = getTraceNodes(ing, cur) //return all the nodes along the trace fromroot up to cur

A: While |traceNodes| > 0 DO

X = traceNodes.removeFirst()

1. NL = getSiblings(X) //return all the siblings after X, excluding X

2. Needs.addAll(getNeeds(NL))

3. IF X is a W-Node: break

4. IF X is a P-Node

Needs.add(term(X))

5. IF X is a C-Node

Needs.add(pref(X))

6. IF X is an H-Node

For each NodeY son of X except the one already in the trace being considered

Cn = getCurNode(ing, Y)

6.1. Needs.addAll(getRelevantNeeds(subTree(ing,Y), Cn))

7 IF (X is a P-Node) and (X ==cur)

Needs.addAll(getNeeds(sonof(X)))

End {While}
B: While |traceNodes| > 0 DO //entering a loop

X = traceNodes.removeFirst()

8. NL = getSiblings() //return all the siblings of X, including X

9. Needs.addAll(getNeedsA(NL))

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 23

10. IF X is an H-Node

For each NodeY son of X except the one already in the trace being considered

Cn = getCurNode(ing, Y)

11. Needs.addAll(getRelevantNeeds(subTree(ing,Y),Cn))

12. IF (X is a P-Node) and (X ==cur)

Needs.addAll(getNeeds(sonOf(X)))

End {While}
return Needs

Here, procedure getNodes(NodeList: NL, NodeType NT) returns all the nodes of type NT

in the list NL and all the nodes of type NT accessible from some node in NL along sub-plan

relation where only W-nodes or H-Nodes occur in the trace. For example, getNodes([P4,H1],P-

Node) will return{P4,P5,P6}, while getNodes([P4,H1],C-Node) will return∅. Procedure get-

Needs(NodeList: NL) returns all the information needs derived from the preconditions or prefer-

ence conditions of P- or C-Nodes with respect to Node list NL. Procedure getNeedsA(NodeList:

NL) is simply getNeed() with additional consideration of the termination conditions of P-Nodes.

Procedure getRelevantNeeds() includes two loops, which are almost the same except that the

first loop deals with the case where a node is not within any WHILE statement while the latter

deals with the case where a node is within the scope of a WHILE statement. In the first case,

only those sibling nodes after the trace node need to be considered, but in the second case, all

the sibling nodes (both before and after) of the trace node need to be considered.

C. Algorithm Analysis

Functionality Analysis: Algorithm 2 adopts 1-level in-depth anticipation. K-level (k ≥ 2)

in-depth algorithms can be similarly realized by extendinggetNodes() such that sons of nodes

in NL are considered up tok levels.

Algorithm 2 allows an agent in one sub-team to better anticipate the needs of agents in

another sub-team if it is aware of the work progress of the other sub-team. This is reflected by

the recursive call ofgetRelevantNeeds()with the progress of each parallel branch (see clause

6.1 and clause 11). A natural way to let two (sub-)teams share their respective work progress

is to designate a point of contact for each team. The two contact points then can proactively

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 24

inform each other their internal progress and share with their respective subteam members about

the progress of other teams.

All the information needs emerging from within a loop will be considered until the termination

of the loop. Hence, the less the scope of a WHILE statement, the better can gain from the

algorithm. An agent would not benefit much from such context-centric needs anticipation if

most part of the team process is within a loop. It seems that the idea of context-centric needs

anticipation does not fit those processes that are a big loop in nature.

An agent could be involved in multiple teamwork processes in pursuit of multiple goals, and

the agent may switch its attention from one goal to another. Because each top-level teamwork

process has a corresponding ING, in such cases the agent can simply change the context from

one ING to another. Such a flexible management of information needs has significantly increased

the scalability of CAST in complex domains.

Complexity Analysis: Given an ING, suppose its average branching factor isb (this depends

on the structure of the original team plans), the depth of the ING isd, and the depth of the

current node isc.

The time complexity of finding all the siblings (clause 1) of a node isb. The time complexity

of getting all the information needs forb nodes is2b (clause 2). In the best case where the ING

contains no H-nodes, the complexity ofgetRelevantNeeds() is simplyO(c ·(b+2b)) = O(3bc).

The worst case is when all the trace nodes are H-nodes. Since an H-node will trigger a recursive

call to getRelevantNeeds(), we can get the recurrence relation ofgetRelevantNeeds():

ad = c · (b + 2b + (b− 1)ad−1),

that is

ad = 3bc + (b− 1)c · ad−1.

Solving this first-order linear recurrence, we have

ad = M + MN · (Nd−2 − 1)/(N − 1),

whereM = 3bc, N = (b− 1)c. Hence,

ad ≈ (MNd−2 −MN) ≈ O(3bc(bc− c)d−2).

The worst case complexity isO(3b2d−2) when b = c.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 25

The complexity in the real cases is much less thanO(3b2d−2), because it is rarely that all the

trace nodes are H-nodes andc is less thanb in most cases.

It is also worth noting that the relevance of information needs changes only when agents

are executing sequential processes or choice points, or are informed of the team progress of

other sub-teams. The algorithm is thus not supposed to be triggered at every step. Rather, it is

triggered only upon knowing some critical teamwork progress has been made (e.g., an agent

in one sub-team was told that another sub-team was reaching a choice point). Most of the

information needs returned from an invocation ofgetRelevantNeeds can be reused until the

above situations occur. This not only avoids computation efficiency problem, but also makes

sense for most complex domains, even though the collection of information needs considered by

agents only approximately reflect the actual needs in between two invocations of the algorithm.

An alternative is to develop iterative deepening depth-first algorithms [26] so that the in-depth

anticipation can be conducted incrementally.

V. EVALUATION

We carried out a set of experiments to evaluate the context-centric approach for managing

teammates’ information-needs, comparing the performance difference of teams using ING-based

mechanism and teams using IFT-based mechanism.

A. Experiment Design

Our experiments involved a team composed of three agents, two firefighters and one ambulance

unit, which function in a simulated fire-rescue domain. Randomly emerging fires introduce tasks

(goals) to the fire fighting team. The fire fighting team keeps working on a fire unless (a) the

fire is already extinguished (i.e. the goal is achieved), (b) the fire becomes out-of-control (i.e.,

the goal becomes impossible), or (c) there is another more urgent fire emerging (e.g., there is

no more people alive in the current fire, while there are people suffering in another fire. In this

case, the current goal becomes irrelevant).

We assume communication cost is not neglectable. The execution of communication actions

will lower down an agent’s performance on its own task (e.g., delaying the execution of domain

operations). However, other things being equal, we assume information is valued higher than

communication cost. Thus, the experiments are designed such that if communication is done in

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 26

the right context at the right time, it can benefit the information receivers on their tasks, and

this will ultimately affect the performance of the whole team.

Two types of critical information are of special interest to this experiment:I1: (out-of-control

?fireId) andI2 : (people-alive ?fireId 0); both are plan-terminating information-needs. Both types

of information are observable to the fire-fighting members, as long as they are near enough to

the fire (i.e., within their sensing ranges). To introduce a change in contexts, we divide the

response of the team to a fire into two phases: (1) moving near to the fire place, and (2) working

on (extinguish fires or rescue people) the fire. We set the ambulance to move much faster than

firefighters such that it is always the first in the team who knows information of typeI1 andI2.

In such a setting, the information-needs of firefighters change: in phase 1 they need information

of both typeI1 andI2, while in phase 2 they no longer need them from the ambulance because

they can sense the information themselves.

To investigate the difference, we designed two proactive teams. They differ in the management

of information-needs: one team uses the new context-centric approach (we call it team P), and

one team uses the original IFT approach (we call it team S, since it’s subscribe-based). During

phase 1, the ambulances in both team P and S will proactively inform other team members

whenever they sensed information of typeI1 or I2 so that the whole team could save effort

and time to work on other emerging fires; during phase 2, knowing the context has changed

(fighters now can sense) the ambulance in team P will not proactively send dynamic information

of type I1 or I2; while the ambulance in team S (insensitive to context) still tries to send

the irrelevant information to fighters. To show the benefits of proactive communication against

other communication strategies, we also designed team R (reactive team) and team N (non-

communication team). Team R uses reactive strategy: during phase 1, the fire fighters will ask

the ambulance unit in certain controllable frequency (e.g. initiate an ask every 10 “extinguish”

operations) whether the fire is out-of-control or whether there is no people alive, and keep an

eye on the replies from the ambulance unit so that they can shift their goals in a timely manner.

Team N works even more inactive: there is no communication regarding information of typeI1

or I2. The communication behaviors of these four team are listed in Table I.

The number of fires is chosen as the control variable. To simplify the domain complexity,

fires pop up one after another: the next fire pops up immediately after the current fire becomes

out-of-control, or there is no more people alive, or it is quenched. For each team we launched

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 27

TABLE I

COMMUNICATION BEHAVIORS

Team type Phase 1 Phase 2

P team inform I1 andI2 proactively

S team inform I1 andI2 proactively inform I1 andI2 proactively

R team ask/replyI1 andI2

N team senseI1 andI2

Team Performance

20

25

30

35

40

45

50

55

60

65

70

12
 14
 16
 18
 20
 22
 initial fire number

ci
vi

lia
ns

 s
av

ed

P Team

S Team

R Team

N Team

Fig. 6. Experiment I

300 runs with different domain configurations (randomizing on fire location, agent location, fire

fierceness, number of people captured in fire). Figure 6 plots the experimental results, where

team performance is measured in terms of the number of civilians saved.

B. Result Analysis

According to Figure 6, the performance of non-communication team (N team) is the worst.

This is not surprising, since in this fire-fighting domain communication is crucial for team

members to coordinate in task (goal) selection and to collaborate their behaviors.

The performance of R team is worse than the two proactive teams (P and S) because of

the widely recognized limitations of reactive communication: an information consumer may not

realize certain information it has is already out of date, or may not know when is the best time

to request information. Thus before using a piece of information, this agent needs to verify the

validity of the information, or needs to ask for a piece of information in a certain frequency.

Consequently, the team can be easily overwhelmed by the amount of communications. Here,

proactive teams outperformed reactive team because the burden of information-acquisition is

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 28

Proactive team

0

10

20

30

40

50

60

70

12
 14
 16
 18
 20
 22

C
iv

ili
an

s
re

sc
ue

d

Reactive team

12
 14
 16
 18
 20
 22
 initial fire #

CC=1

CC=2

CC=3

CC=4

CC=5

Fig. 7. Experiment II

shifted from the information consumer to the information provider, who knows exactly when to

provide information.

For the two proactive teams, P team outperformed S team, and their performance gap increased

as team task (fire number) increased. This is because P team uses the context-centric approach

to manage teammates’ information-needs, hence the ambulance will not send out irrelevant

information in phase II. There is only one context change occurred in this experiment. From

this we can anticipate that team performance may benefit more from the new approach as

team complexity increases (e.g., team process involves more context changes) or the amount of

information to be exchanged expands.

C. Varying Communication Costs

To gain a better understanding of how communication cost may affect team performance in

our experimental setting, we varied the delay caused by inter-agent communication from 1 to 5

processing cycles. In this experiments we only focused on the proactive team (P team) and the

reactive team (R team), using the same deployment of the simulator. As listed in Table 1, their

communication behavior differs only in phase I of their team process.

We run 50 experiments for each team with a fixed number of fires and a fixed communication

delay. Figure 7 shows the average number of civilians rescued by the two teams.

The results show that the team performance (in terms of number of civilians rescued) of

the proactive team is significantly better than the reactive team; this confirms our prediction

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 29

that proactive communication works better than reactive communication in time-stress domains.

It’s not surprising to see that both teams’ performance degraded as the communication cost

increased. However, the results also show that the reactive team is more sensitive to the change

of communication cost. This is because agents in the reactive team, not knowing when is the best

opportunity to ask, need to initiate more communications. On the other hand, such sensitivity

becomes less obvious as the communication cost increases. This is because the increase of the

communication cost virtually decreases the frequency of communication.

VI. COMPARISON AND DISCUSSION

Recently there have been many efforts using graphs to represent multi-agent cooperations and

to support social reasoning. We compare our approach with the dependence structures (networks

and graphs) [17], the TAEMS approach [27], and the hierarchical task networks [16] used in

RETSINA [28].

External description is the basic concept of the dependence theory proposed by Sichman,

Conte, et al. [17], [18]. The external description of an agent reflects the agent’s private view

of all the agents in the system; it has one entry for each agent, containing the goals, actions,

resources and plans of that agent. Such information can be used to infer dependence relations and

to construct dependence networks and dependence graphs. A dependence network (or dependence

graph), which records information regarding the action/resource dependences among agents, can

be used to identify the dependence situations (e.g., mutual dependence, reciprocal dependence,

among-dependence, collective-dependence, etc.) that may hold among two or more agents wrt.

certain goals.

As the authors [18] noted, the consequence of using the dependence networks is the decreasing

of inter-agent communications. From this perspective, the dependence structures and the INGs

proposed in this paper serve the same ends. However, even though both are mechanisms useful

for social reasoning, they differ in several ways due to their different focuses and the under-

lying research motivations. First, the dependence framework focuses on action and resource

dependences emerging in carrying on a certain plan. For this reason, the dependence framework

does not pay much attention to the dynamics of dependence relations, assuming the models of

others are fixed once established. The ING approach focuses more on anticipating the dynamic

information dependence and how the agents proactive meet others’ needs. The INGs thus support

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 30

such dynamic reasoning. Second, in the dependence framework, an agent distinguishes his own

and others’ plans so that he can clearly identify various dependence situations (i.e., locally or

mutually). In CAST, however, team plans are shared. Consequently, all agents in a team have

the same INGs, although the INGs may not be exactly in agreement with the progress status.

In spite of such differences, the dependence theory could shed light on our future work. For

instance, the current CAST system emphasizes more on encouraging proactive communication,

which necessitates the reasoning on “who depends on me”. In this regard, CAST can benefit

from the idea of dependence structures, which allows an agent to reason about other teammates

in two different perspectives: whom do I depend on, and who depends on me [17]. Some kinds

of dependence relations characterized in the dependence framework [18] are also captured in

INGs. For instance, intuitively we can take the relation between an information needer and the

set of potential providers as “OR-dependence”.

TAEMS (Task Analysis, Environment Modeling, and Simulation) is a framework for modeling

complex task environments at three levels of abstraction: objective, subjective, and generative

[27]. A TAEMS task network is a hierarchical representation of agent problem solving processes

that describe alternative ways of accomplishing a desired goal. They represent major tasks and

decision points, resource constraints, interactions between tasks, and primitive actions statistically

characterized in terms of quality, cost and duration [29]. Thus, TAEMS-based agents can reason

about what they should do and when, reason about temporal and resource constraints, and

reason about interactions between activities being carried out by different agents [30], [31].

Interdependency between agents (represented in TAEMS by links to non-local effects) is the

drive behind coordination.

One similar thing between TAEMS agents and CAST agents is that both take task structures

(TAEMS task networks, PrT nets) as a critical component of their SMM. Such SMM maintains

critical process information for run-time coordination. CAST takes further advantages of the PrT

net representation of teamwork processes by generating INGs to facilitate the reasoning of others’

information needs that may change over time. TAEMS task structures and INGs have different

annotation information due to their different objectives. The primitive actions in a TAEMS task

structure are associated with constraints about the quality, cost and duration, which serves in

deciding potential coordination opportunities. TheP -nodes andC-nodes are associated with

information needs structured as inference trees, which allow agents to reason about teammates’

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 31

direct or indirect needs at multiple levels.

RETSINA-MAS [28] is a model of teamwork built on top of the RETSINA individual agent

architecture [32]. In RETSINA-MAS system, initially all agents have a commonly agreed partial

plan for fulfilling a team task (goal). The team members cannot commit to executing the team

plan until after they have reached a consensus that all plan requirements are covered by their role

proposals without any conflicts. A team plan is structured in Hierarchical Task Network (HTN)

[16], where leaf nodes represent primitive actions and non-leaf nodes represent intermediate

goals or compound tasks that must be achieved before the overall goal (root node) is complete.

Both CAST (Yen, et al., 2001) and RETSINA-MAS assume that all agents begin with their

own copy of partially instantiated shared plans (recipes): CAST agents share the same team

processes represented by PrT nets, while RETSINA-MAS agents share the same description

of the task in the form of an HTN plan. In addition, both architectures endeavored to allow

agents to monitor the progress when executing a team plan. In RETSINA-MAS the notion of

“checkpoint” is used as a way of verifying the progress in relation to the overall team plan.

Checkpoints are communicated by teammates to indicate individual progress. While, in CAST

the communication of teamwork progress (control token information) is implemented as a kind

of built-in information-needs. CAST agents need to inform appropriate teammates when they

start a team plan, a team operator, a joint-action, or when the execution of a plan is terminated.

From a more general point of view, the (pre-, termination, or preference) conditions or constraints

evaluation along a team process in CAST can be taken as implicit checkpoints.

Various notions of context can be found in the field of artificial intelligence. For example, the

notion of context is used by Giunchiglia [33] as a means of formalizing the idea of localization.

Contexts in the SharedPlans theory [23], [12] serve as constraints or explanations of the adoption

of intentions. Different from these theoretical studies, the notion of context in this paper is

used to facilitate the practical reasoning and flexible management of teammates’ time-changing

information needs.

VII. C ONCLUSION

CAST is a team-oriented agent architecture that explicitly represents a shared mental model

(SMM) about team processes such that agents in a team can anticipate information needs of

teammates and to proactively offer relevant information to them based on the SMM.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 32

To overcome the limitations of the IFT-based management of teammates’ information needs,

in this paper, we described an ING-based mechanism for tracking the contextual changes of in-

formation needs. This enables agents to activate and deactivate information needs dynamically as

a team activity proceeds. This approach, leveraging the shared awareness of teamwork processes,

offers a practical way for agents in a team to exchange information proactively, selectively, and

context-sensitively.

By experiments we evaluated the ING-based approach. The results demonstrated that the

context-centric management of information needs can enhance team performance considerably.

This is by no means conclusive, though. One of our future work is to further evaluate this

approach in various domains with increasing complexities to explore the trend of its impacts on

the performance of mixed human/agent teams.

ACKNOWLEDGMENTS

This research has been supported by AFOSR MURI grant No. F49620-00-1-0326.

REFERENCES

[1] J. Grunig, “Information and decision making in economic development,”Journalism Quarterly, pp. 565–575, 1969.

[2] J. Larson and C. Christensen, “Groups a problem-solving units: Toward a new meaning of social cognition,”British Journal

of Social Psychology, pp. 5–30, 1993.

[3] J. Crant, “Proactive behavior in organization,”Journal of management, vol. 26, no. 3, pp. 435–462, 2000.

[4] T. Dickinson and R. McIntyre, “A conceptual framework for teamwork measurement,” inTeam performance assessment

and measurement: theory, methods and applications, M. T. Brannick, E. Salas, and C. Prince, Eds., 1997, pp. 19–44.

[5] R. McIntyre and E. Salas, “Measuring and managing for team performance: emerging principles from complex

environments,” inTeam effectiveness and decision making in organizations, R. Guzzo and E. Salas, Eds. San Francisco:

Jossey-Bass, 1995, pp. 149–203.

[6] K. A. Smith-Jentsch, J. H. Johnson, and S. C. Payne, “Measuring team-related expertise in complex environments,” in

Making Decisions Under Stress: Implications for Individual and Team Training, J. A. Cannon-Bowers and E. Salas, Eds.,

2000, pp. 61–87.

[7] J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu, and R. Volz, “CAST: Collaborative agents for simulating teamworks,” in

Proceedings of IJCAI’2001, 2001, pp. 1135–1142.

[8] P. Stone and M. Veloso, “Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time

strategic teamwork,”AI, vol. 110, pp. 241–273, 1999.

[9] B. J. Clement and A. C. Barrett, “Continual coordination through shared activities,” inProceedings of the Second

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’03), 2003.

[10] M. Tambe, “Towards flexible teamwork,”Journal of Artificial Intelligence Research, vol. 7, pp. 83–124, 1997.

[11] P. R. Cohen, H. J. Levesque, and I. A. Smith, “On team formation,”Contemporary Action Theory, 1997.

August 5, 2005 DRAFT

CONTEXT-CENTRIC NEEDS ANTICIPATION 33

[12] B. Grosz and S. Kraus, “The evolution of sharedplans,”Found. and Theories of Rational Agencies, pp. 227–262, 1999.

[13] J. A. Cannon-Bowers, E. Salas, and S. A. Converse, “Shared mental models in expert team decision making,” inIndividual

and group decision making, 1993, pp. 221–246.

[14] J. Yen, X. Fan, and R. A. Volz, “Information needs in agent teamwork,”Web Intelligence and Agent Systems: An

International Journal, no. 4, pp. 231–247, 2004.

[15] X. Fan, R. Wang, B. Sun, S. Sun, and J. Yen, “Multi-Agent Information Dependence,” inProceedings of the 2005 IEEE

International conference on Integration of Knowledge Intensive Multi-Agent Systems, 2005, pp. 41–46.

[16] M. Williamson, K. S. Decker, and K. Sycara, “Unified information and control flow in hierarchical task networks,” in

Proceedings of the AAAI-96 workshop on theories of planning, action, and control, 1996.

[17] J. S. Sichman, R. Conte, C. Castelfranchi, and Y. Demazeau, “Social Reasoning Mechanism Based on Dependence

Networks,” in Proceedings of the 11th European Conference on Artificial Intelligence, A. G. Cohn, Ed., 1994.

[18] J. S. Sichman and R. Conte, “Multi-agent dependence by dependence graphs,” inAAMAS 2002, 2002, pp. 483–490.

[19] J. Yin, M. S. Miller, T. R. Ioerger, J. Yen, and R. A. Volz, “A knowledge-based approach for designing intelligent team

training systems,” inProc. of the 4th International Conference on Autonomous Agents, 2000, pp. 427–434.

[20] D. Alberts, J. Garstka, and S. F., “Network centric warfare, ccrp.”

[21] J. Yen, X. Fan, S. Sun, T. Hanratty, and J. Dumer, “Agents with shared mental models for enhancing team decision-

makings,”Decision Support Systems, p. (in press), 2005.

[22] X. Fan, J. Yen, M. Miller, and R. A. Volz, “The semantics of MALLET–an agent teamwork encoding language,” in

Declarative Agent Languages and Technologies II: Second International Workshop, DALT 2004, J. Leite, A. Omicini, and

P. Torroni, Eds. Springer-Verlag, Berlin, 2005, vol. 3476, pp. 69–91.

[23] B. Grosz and S. Kraus, “Collaborative plans for complex group actions,”Artificial Intelligence, vol. 86, pp. 269–358, 1996.

[24] E. Davis, “Knowledge preconditions for plans,”Journal of Logic and Computation, vol. 4, no. 5, pp. 721–766, 1994.

[25] P. R. Cohen and H. J. Levesque, “Teamwork,”Nous, vol. 25, no. 4, pp. 487–512, 1991.

[26] K. E. Korf, “Depth-first iterative deepening: an optimal admissible tree search,”Artificial Intelligence, vol. 27, no. 1, pp.

97–109, 1985.

[27] K. Decker, “TAEMS: A framework for environment centered analysis & design of coordination mechanisms,” in

Foundations of Distributed Artificial Intelligence, Chapter 16. G. O’Hare and N. Jennings (eds.), Wiley Inter-Science,

January 1996, pp. 429–448.

[28] J. Giampapa and K. Sycara, “Team-oriented agent coordination in the RETSINA multi-agent system,” intech. report

CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon University, 2002.

[29] K. S. Decker and V. R. Lesser, “Quantitative modeling of complex computational task environments,” inProceedings of

the 11th National Conference on Artificial Intelligence, 1993.

[30] T. Wagner, V. Guralnik, and J. Phelps, “A key-based coordination algorithm for dynamic readiness and repair service

coordination,” inProceedings of the 2nd International Conference on Autonomous Agents and MAS, 2003.

[31] J. Graham, K. Decker, and M. Mersic, “DECAF - a flexible multi agent system architecture,”Autonomous Agents and

Multi-Agent Systems, vol. 7, no. 1–2, pp. 7–27, 2003.

[32] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, “Distributed intelligent agents,”IEEE Expert, Intelligent

Systems and their Applications, vol. 11, no. 6, pp. 36–45, 1996.

[33] F. Giunchiglia, “Contextual reasoning,”Epistemologia, special issue on I Linguaggi e le Macchine, vol. XVI, pp. 345–364,

1993.

August 5, 2005 DRAFT

