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Abstract

The recognition-primed decision (RPD) model is a primary naturalistic decision-making approach which seeks to
explicitly recognize how human decision makers handle complex tasks and environment based on their experience. Moti-
vated by the need for quantitative computer modeling and simulation of human decision processes in various application
domains, including medicine, we have developed a general-purpose computational fuzzy RPD model that utilizes fuzzy
sets, fuzzy rules, and fuzzy reasoning to represent, interpret, and compute imprecise and subjective information in every
aspect of the model. Experiences acquired by solicitation with experts are stored in experience knowledge bases. New local
and global similarity measures have been developed to identify the experience that is most applicable to the current
situation in a specific decision-making context. Furthermore, an action evaluation strategy has been developed to select
the workable course of action. The proposed fuzzy RPD model has been preliminarily validated by using it to calculate
the extent of causality between a drug (Cisapride, withdrawn by the FDA from the market in 2000) and some of its adverse
effects for 100 hypothetical patients. The simulated patients were created based on the profiles of over 1000 actual patients
treated with the drug at our medical center before its withdrawal. The model validity was demonstrated by comparing the
decisions made by the proposed model and those by two independent internists. The levels of agreement were established
by the weighted Kappa statistic and the results suggested good to excellent agreement.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Classical decision-making strategies largely use various axiomatic models where the optimal choice is based
on a specific criterion or evaluative standard, usually the maximization of expected utility [3,27,38]. Studies
have shown that sometimes this class of models cannot adequately describe real-world decision-making
[28]. The naturalistic decision-making (NDM) paradigm is an alternative, which investigates the cognition
process of human decision makers in a more realistic setting. NDM researchers argue that experts extensively
rely on situation assessment rather than generating a set of alternatives first and then weighing their proba-
bilities and selecting the best one among them. Novices, on the other hand, are inclined to utilize a more delib-
erative decision-making approach. Image Theory [2] is one of the well-developed NDM approaches, where
three different images are used to organize experts’ thinking about decisions. It was recently used, among other
applications, to assist clinicians in understanding medical decisions and developing ways to overcome the dis-
parity between principle and clinical practice [9]. Another method is called Task Analysis where human deci-
sion processes are explored by analyzing a specific task in the natural environment of interest [35]. Some
(healthcare) applications have been attempted [13,33].

Klein and his colleagues studied how fire commanders made decisions and found that the decision-making
of the expert commanders was largely based on careful observation, situation recognition and past experience.
After studying hundreds of experienced decision makers, Klein found that about 50-80% of all the decisions
were made in this way [15]. They proposed a qualitative recognition-primed decision (RPD) model to charac-
terize the decisions in naturalistic settings [19]. Instead of trying to find the best (i.e., optimal) solution, the
RPD identifies the first workable option based on previous decision experiences (a decision strategy called sat-
isfying) [16]. The reason is that real-world decision tasks are often characterized by ill-structured problems,
dynamic environments, ill-defined or competing goals, etc., which make it difficult to find the optimum solu-
tion. The RPD model is more efficient and suitable for modeling experts. For a variety of applications, it can
represent human decision behavior more reasonably than the optimizing approach, and thus is widely
accepted by decision makers. For instance, a study showed that the RPD was followed for 95% of all the deci-
sions made by the naval officers on a cruiser [14] The classical RPD model provides important implications for
decision support system design, decision skill training, and personnel selection for critical incident managers
[18].

Motivated by the need for quantitative computer modeling and simulation of human decision process as
well as computerized assistance to enhance this process, researchers recently attempted to make the classical
RPD model quantifiable. By quantifiable, we mean a quantitative and computable RPD model that is readily
implementable by computer. A long-term memory structure was proposed to represent experience [40], result-
ing in a ““decision-specific’’ architecture (other aspects of cognition such as cue abstraction, action evaluation,
etc. were ignored). Liang et al. studied the simple match of RPD and employed a neural network to formalize
an experience [22]. Robichaud further extended the neural network model by using fuzzy techniques to inter-
pret the external environment [31]. There are also several studies in which the computational RPD model was
developed and integrated with agent technologies. Norling et al. employed the computational RPD in the
Belief-Desire-Intention agent framework as a more realistic way for simulating human societies [25]. More
recently, Yen et al. developed an agent architecture (R-CAST) that includes a computational RPD model that
extends the RPD model in order to support human agent collaboration and the sharing of relevant informa-
tion within a team [10,42]. In R-CAST, experiences are organized in a hierarchical structure. Both the cue
matching and the expectancy monitoring components of RPD are implemented as collaborative activities that
involve agents reasoning about information that may be indirectly linked to cues and expectancy through
inference rules. Fuzzy logic was used in [34] to incorporate a subjective and imprecise interpretation of the
cue values, but the use of fuzzy logic was rather limited since environmental variables were still represented
as crisp values, not as fuzzy numbers/sets. The fuzziness in the process of cue abstraction and feature matching
were not dealt with, either.

Fuzzy set theory is an effective paradigm to quantitatively represent and process deterministic imprecision,
uncertainty, or subjectivity, which are frequently encountered in real-world applications [4,24,37]. The basis of
the theory is a fuzzy set [12,23,45]. As an example, a person’s age is numerically precise. However, relating a
particular age to “young” can be difficult, confusing, and uncertain. What age is young and what age is not?
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The nature of this question to any particular person is deterministic, not random. Fuzzy set generalizes 0 and 1
membership values of a classical set to a membership function of a fuzzy set ranging from 0 to 1; 0 means no
association, 1 indicates complete association, and any number in between means partial association. Fuzzy set
theory lays a foundation for computing with words. To illustrate this, suppose that 30 years is “young” with a
membership value of 0.8 and is “old” (a fuzzy set) with a membership value of 0.3. Then, the membership
value for the age of 30 being “young and old” (a fuzzy set) is 0.24 if the algebraic product fuzzy AND operator
is used. The membership value for the age being “young or old” (a fuzzy set) is 0.8 if Zadeh fuzzy OR operator
is utilized. They are partial memberships because the memberships being ANDed and ORed are partial, not
full. The membership values of “not young” and “not old” can be computed as 0.2 and 0.7, respectively.

Another important feature of the theory is fuzzy if—then rules (e.g., if x is Small and y is Fast then z is High,
where Small, Fast, and High are fuzzy sets). Such rules have been widely used in fuzzy modeling and control as
a powerful tool for quantitatively representing knowledge and experience [29,30,36]. Conclusions can be
inferred from fuzzy rules for given partially matching inputs [44,46].

In this paper, we develop, in a systematic manner, a fuzzy logic-based general-purpose computational fuzzy
RPD model. Compared with the literature, our novelties include the following. First of all, fuzzy sets are
employed to formalize the representation of imprecise cues, and fuzzy reasoning is used to abstract higher level
cues from lower level elementary data. Second, to search for the experience that is most applicable to the sit-
uation of interest, similarity measures are developed to evaluate the degree of matching between the situation
and a prior experience because dealing with partial matching is critical for many real-world problems. These
similarity measures can handle different types of cues involving nominal values, quantitative data and fuzzy
numbers/sets. Finally, a quantitative action evaluation strategy empowered by fuzzy logic is developed to
examine whether a course of action is workable.

To better establish the validity of the proposed model and demonstrate its practical utility, we applied it to
a pilot study of assessing the causality between a drug (we chose Cisapride) and its adverse effects in the con-
text of post-marketing surveillance. One hundred hypothetical patients were involved in the study whose char-
acteristics were created based upon the profiles of more than 1000 patients treated with the drug at our
Veterans Affairs Medical Center before it was withdrawn from the market in late 1990s due to the severe
adverse events. Decisions made by the model were compared to those made by two independent physicians.
The extent of the agreement was evaluated by the weighted Kappa statistic and results suggested good to
excellent agreement between the model and the physicians.

To the best of our knowledge, there is no report in the literature on medical application of the RPD mod-
eling approach, conventional/classical or computational. Therefore, the evaluation itself is novel with respect
to application.

The remainder of this paper is organized as follows. Section 2 briefly introduces the classical RPD model.
Section 3 describes in detail the proposed computational fuzzy RPD model. To better present the theoretical
development and also show the practice relevance of the model, we use detection of (unknown) drug adverse
events as an illustrative example throughout this section. In Section 4, the model is preliminarily validated
using 100 hypothetical patients. The statistic results of comparing the decisions made by the proposed model
and two physicians are shown. We wrap up with conclusions in Section 5.

2. Brief background on classical recognition-primed decision model

Fig. 1 shows the classical RPD model that includes two processes: (1) assessing the current situation to rec-
ognize which course of action makes sense, and (2) evaluating the course of action by mental simulation
[17,42]. It assumes that experts employ ‘‘situation-experience matching” decision rules in which they match
the current situation with prior experiences. Once they are matched, the decisions (or actions) in that experi-
ence will be utilized to solve the current problem. Being more than simple matching, the RPD model provides
a well-structured process in which decisions are part of a decision-action cycle rather than a single judgment.
This process enables decision makers to adapt and refine a decision according to feedback and changing
situation.

Four by-products are generated in the first process (Fig. 1): relevant cues, expectancies, plausible goals, and
actions. Cues represent the higher-level information (synthesized from elementary or environmental data) that
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Fig. 1. The classical RPD model [17].

a decision maker must pay attention to. Expectancies describe what will happen next as the current situation
continues to evolve in a changing context. If one of them is found to be “anomaly’ (i.e. what the decision
maker expects conflicts with the new observed facts), it indicates that the current situation is misinterpreted
and adjustments may be required. Goals represent an end state that the decision maker is trying to achieve.
Actions represent a set of potential decisions that the decision maker can take in the current situation.

In the second process illustrated in Fig. 1, the course of action will be singly evaluated by imaging how a
particular action will evolve. The decision maker may either modify the course of action, or reject it and look
for another option.

3. Proposed computational recognition-primed decision model

Our development of a computational decision-making model was motivated by a real medical application
of computer assisted post-marketing surveillance of unknown severe adverse drug reactions (ADRs), which
represents a significant public health problem. In the context of the present paper, an ADR refers to the unan-
ticipated drug-associated adverse incident(s) that follows the administration of a drug when it is used properly
and at an appropriate dosage [8]. ADRs can be severe with serious long-term effects and even cause death [20].

To illustrate our model more clearly, we will utilize some of the cognitive processes that a physician would
employ when making decisions regarding causality assessment between drug and adverse effect. The descrip-
tion and formalization of this application do not, and cannot, cover all aspects of the decision making related
to the ADR detection problem. We focus on how a physician assesses the evidence for the causality in an indi-
vidual patient case. Our intention here is to demonstrate the applicability of the proposed model in the medical
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Fig. 2. The proposed fuzzy logic-based computational fuzzy RPD model. The differences between Figs. 1 and 2 outline the proposed fuzzy
RPD framework with respect to the classical qualitative RPD model.

domain. We stress that the proposed model is general and useful for many application domains besides
medicine.

To develop such a model, the primary difficulties are: (1) how to quantitatively represent an experience, (2)
how to quantitatively perceive, comprehend, and assess current situation, (3) how to quantitatively decide
which past experience is most similar to the current situation, and (4) how to quantitatively evaluate whether
the course of action is workable or not.

Our fuzzy RPD model deals with these issues (Fig. 2). The box “Elementary data gathering from environ-
ment” is the input of the model and the “implementation” of the chosen action is the output. Compared with
the classical RPD model shown in Fig. 1, two boxes, “Fuzzy abstraction” and ‘““Experience representation’,
are added in order to help the reader better understand the computational model. In the classical model, these
two processes are assumed to be internal activities of human mind and are not explicitly represented in Fig. 1.
We now explain the proposed fuzzy RPD model component by component.

3.1. Situation awareness

A decision task is often characterized by a pattern of higher level cues. In the phase of situation awareness,
each cue is abstracted or synthesized from some external environmental variables whose values are observable.
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Feature-matching is then used to diagnose the current situation. That is, these synthesized cues are compared
with the pre-specified domain-dependent features. If they match, the current situation is recognized as typical
and four by-products are achieved (i.e., the types of goals, important cues, next expectancies, and a course of
action that likely will succeed). If this fails due to lack of information on experience, more information will be
collected and a new feature-matching process will be performed.

3.1.1. Cue types

Cue is a key concept in the RPD methodology since both the situation awareness and action evaluation
processes are centered on cues. Cues are usually abstracted or fused from elementary data and their types
could be quantitative, nominal or fuzzy in the proposed computational fuzzy RPD model. A quantitative
cue refers to a variable whose values are described by a certain order. It can be either continuous or discrete.
While a quantitative continuous cue uses real values (e.g., blood pressure), a quantitative discrete cue uses
integer values (e.g., number of children). A nominal or symbolic cue is a discrete cue whose values are not
necessarily in any order (e.g., patient gender). The addition of fuzzy cues to our model is novel relative to
the literature and is inspired by the need for representing information encountered in the real world that is
imprecise in nature. Fuzzy information may be due to the imprecision of real data or arise from subjective
judgments. For instance, the representation of causal relationship between an adverse event and a specific drug
may be qualitative using such words as probable, possible, unlikely, rather than precise values. Sometimes
even though a variable has precise values one may only care about categories (e.g., young, old). Such imprecise
classes play an important role in human thinking. Therefore, the cues in an experience are more likely to be
vague due to the imprecise nature of abstract thoughts and concepts.

In the case of ADR assessment, the cues employed to evaluate the causality are abstracted from the descrip-
tion in Edwards’ paper [8] and summarized in Table 1. The degree of causality is categorized as “‘very likely™,
“probable”, “possible”, “unlikely”, and the evidence to determine each term is defined by a pattern of cue
values. Among these cues, temporal association is the most important one. It refers to the temporal relation-
ship between taking the drug and occurrence of the adverse event. Other explanations denote alternative expla-
nations by concurrent disease or other drugs. Dechallenge is defined as the relationship between withdrawal of
the drug and abatement of the adverse effect. Contrary to dechallenge, rechallenge describes the relationship
between re-introduction of the drug and recurrence of the adverse event. The weights for these cues are design
parameters and are assigned by domain experts.

The cues temporal association, dechallenge and rechallenge are all fuzzy variables which can be represented
by fuzzy sets or derived through fuzzy reasoning. Interestingly, the linguistic terms like “possible’ or ‘“unli-
kely”” employed to represent these cues are frequently used in the literature [8], which indicates the vagueness
of both these cues and the problem. This also suggests fuzzy set theory is a natural way to formalize this
problem.

3.1.2. Fuzzy abstraction

In this subsection, we demonstrate how to use fuzzy reasoning to abstract high level cues from elementary
data in the proposed computational fuzzy RPD model. Fuzzy sets and fuzzy if-then rules are widely used to
represent imprecise information and model human expertise in a variety of domains [1,39,43]. Fuzzy reasoning
provides an inference procedure that derives conclusions from known facts and a set of fuzzy if-then rules.
These theories suggest a systematic strategy to comprehend observable environmental variables and abstract
or synthesize higher level cues.

Table 1

Cues for drug causality assessment

Cues Cue type Examples of cue values Abstraction method Significance weight
Temporal association Fuzzy Likely, possible, unlikely Fuzzy reasoning 1

Other explanations Nominal Yes, no Crisp reasoning 0.6

Dechallenge Fuzzy Likely, probable, unlikely Fuzzy reasoning 0.7

Rechallenge Fuzzy Likely, possible, unlikely Fuzzy reasoning 0.8
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For the cues listed in Table 1, we chose temporal association as an example to show how fuzzy reasoning is
employed to achieve this process. The cue value of temporal association can be inferred from the time duration
between taking the drug and appearance of an adverse effect (z4). It should be noted that in the case of a sus-
pected ADR, exposure to the causal agent (drug) should always precede the effect (ADR) of interest. This dis-
tinction is important because the clinical manifestations of an ADR might result from entirely different causes
(e.g., underlying diseases). Therefore we define the following fuzzy reasoning rules to link cause (drug) to effect
(ADR):

If ¢4 is short, then temporal association is likely.
If ¢4 is medium, then temporal association is possible.
If t4 is long, then temporal association is unlikely.

Both t4 and temporal association are fuzzy variables which are characterized by the triangular fuzzy sets
(Fig. 3). Other fuzzy rules that we used cover the adverse effect of interest (e.g., ventricular tachycardia, syn-
cope) as shown below:

If ¢4 is short and ventricular tachycardia is found, then temporal association is /ikely.

If (24 is medium and ventricular tachycardia is found) or (¢4 is short and only syncope is found), then tem-
poral association is possible.

If ¢4 is long, then temporal association is unlikely.

The triangular, trapezoidal, and Gaussian fuzzy sets are arguably the most widely used fuzzy set types in
the literature. Note that the triangular type is a special case of the trapezoidal type. The trapezoidal type is
considered, to some extent, similar to the Gaussian type. There does not exist a general theory to guide the
user to select the best type for a given application. Section is case by case and in most application is based
on the trial and error approach. The fuzzy values for the variables as well as the fuzzy sets were determined
after intensive consultation with an experienced internal medicine physician on the research team.

For a particular ADR, 74 = 1 day, then only the first two rules are activated. If the algebraic product fuzzy
AND operator and Zadeh fuzzy OR operator are used, we can compute the fuzzy set for the corresponding
temporal association:

2
“ - (x) _ l—gx, ) 0 <x < 0.5 (1)
temporal _association 2_25 (28x + 153x _ 76)’ 05 < x < 1
1 short medium long 1 unlike possible likely
¥ 7
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Fig. 3. Fuzzy sets for time duration and temporal association.



Y. Ji et al. | Information Sciences 177 (2007) 4338—4353 4345

This membership function represents the fuzzy cue value abstracted from time duration through fuzzy
reasoning. Its value will be compared with the corresponding cue values stored in the experience knowledge
base.

The following shows relevant rules that are utilized to extract the fuzzy values of dechallenge.

If stop date is available during the time of admission and the patient is discharged alive, then dechallenge
is likely.

If stop date is not available during the time of admission and the patient is discharged alive, then dechal-
lenge is possible.

If temporal association is unlikely, then dechallenge is unlikely.

To extract the fuzzy values of rechallenge, we use p; to represent the first drug-ADR pair and p, the second
drug-ADR pair on the same patient. The following rules are defined:

If p; has likely temporal association and p, has likely temporal association, then rechallenge is /ikely.
If p; has likely temporal association and p, has possible temporal association, then rechallenge is
likely.

If p; has likely temporal association and p, has unlikely temporal association, then rechallenge is possible.
If p; has possible temporal association and p, has likely temporal association, then rechallenge is
likely.

If p; has possible temporal association and p, has possible temporal association, then rechallenge is
possible.

If p; has possible temporal association and p, has unlikely temporal association, then rechallenge is
possible.

If p; has unlikely temporal association and p, has likely temporal association, then rechallenge is possible.
If p, has unlikely temporal association and p, has possible temporal association, then rechallenge is
possible.

If p, has unlikely temporal association and p, has unlikelytemporal association, then rechallenge is
unlikely.

Comparing relevant cue values with the cue values stored in prior experiences requires similarity measures.
We will introduce new measures for the proposed model. But first, let us discuss how to quantitatively repre-
sent an experience and define an experience knowledge base.

3.1.3. Experience representation

The proposed model is grounded on domain experts’ experiences. As such, prior experiences need to be
acquired from human experts and stored in an experience knowledge base for future use. Below, we first give
a sample ADR experience and then abstract its formal representation.

Our knowledge base for the task of assessing suspected ADR is achieved by intensive discussion with an
experienced internist as well as by careful analysis of relevant papers in the literature. According to the clas-
sification scheme in [8], a particular pattern of cue values characterizes a specific type of causality which may
require certain courses of action to handle the ADR. Therefore, we can define various experiences, each of
which is associated with a type of causality (e.g. very likely, probable, and possible). These experiences form
an experience knowledge base. The following is a sample experience which is illustrated in natural language for
the easier understanding:
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Experience N: The causality between the drug and a particular ADR is very likely.

Cues: (1) The occurrence of ADR has a likely temporal association with the drug.
(2) There is no other explanation.
(3) The ADR has likely dechallenge relationship with the drug.
(4) The ADR has likely rechallenge relationship with the drug.

Goal: Find the strength of the causality between a drug and a particular ADR.

Actions: (1) Suggest for further analytical studies.
(2) Suggest filing an ADR report online.
Expectancy: (1) More similar cases are available.

(2) Relevant information for filing an ADR report is available.

Note that the definition of an experience knowledge base is always goal-oriented. From physician’s perspec-
tive, another critical goal in the ADR problem would be how to manage the patient who most likely has the
ADR. In this case, more relevant cues may be required, and the action would be to reduce the dosage of the
drug or discontinue the drug and initiate alternative therapy.

To make our work systematic, we now provide a general representation. An experience can be represented
by a quintuple:

€ = (xiaciaEiaGiaAi)

in which x; is the name of the ith experience in an experience knowledge base. C; is a collection of high-level
cues that are abstracted from environment variables. For a medical problem, environment variables could be
any lower level information that may affect a decision-making, such as physician’s observation (e.g., symp-
toms), patient’s medical history, and laboratory tests. E; and G; denote the set of expectancies and goals of
the experience, respectively. A4; is a set of courses of action associated with the experience, each of which is
a sequence of lower level actions. In Sections 3.1.5 and 3.2, we will describe how a fuzzy logic-based represen-
tation of cues and courses of action is used in the proposed fuzzy RPD model for realizing cue matching and
evaluating courses of action.

3.1.4. Similarity measures

In the proposed computational fuzzy RPD model, similarity measures are employed to assess the degree of
likeness between the current situation and past experience so as to find out whether the past experience could
be used to solve the current problem. Other computational RPD models use different ways (e.g. crisp matching
[25], neural network [22,31]) to achieve the matching between the current situation and past experience, but
they either cannot capture partial matching or assume that all cues are crisp values. Our approach can over-
come these limitations.

We assume that (1) the cues in current situation and the ones in the past experience have the same set of
features or attributes, and (2) the values assigned to them characterize the current situation and past experi-
ences. Suppose that V" and V7, two vectors, denote the set of cue values in the current situation and a prior
experience, respectively:

Vi=(c),chy o oyCyennsc),
where cues ¢; and ¢ can be nominal, quantitative or fuzzy values. The similarity measure between } and V7,
called global similarity, is needed and such measure should be computed using the local similarities calculated
for the cue value pairs ¢; and ¢}. There are many similarity measures in the literature [7,41]. However, they are
not capable of handling the different types of cues in our model. Furthermore, they do not provide a means to
aggregate local similarities for pattern matching when the required information is not satisfied. Therefore, we
had to develop new ones ourselves.
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We propose a local similarity measure that can handle heterogeneous types of cues. After a set of local sim-
ilarities for known cue value pairs are obtained, they are amalgamated into a global similarity measure. We
define the following heterogeneous similarity measure to calculate the local similarity between ¢; and ¢/

0, if ¢; or ¢} is unknown

overlap(c;, c}), if cue j is nominal

Si(ej, ) = (2)

1 — normalized diff (c;,c), if cue j is quantitative

fuzzy sim(c;, c}), if cue j is fuzzy value

Decision makers often have to make decisions under the condition of incomplete information. In the above
definition, the cue similarity is set 0 if either of the cue values is unknown. The function overlap( ) is defined
as:

: 0
I, if ¢ =)

wm@@@:{ ()

That is, for nominal cue values, the similarity is 1 if the cue values are equal; otherwise it is 0. Computing the
similarity for quantitative cue values involves distance measure normalized_diff:

0, otherwise

lej = ¢}l

A

J

normalized diff (c;, ¢}) = (4)
where A; = a; — b; is employed to normalize the cue difference, and @; and b; are the maximum and minimum
values for cue j, respectlvely

The last expression in the above formula, fuzzy_sim(c;,c J) deals with cues represented by fuzzy sets. Let cue
J be defined on the universe of discourse X and x be an element of X. In this case, fuzzy cue values ¢; and ¢/ are
two fuzzy sets whose membership functions are defined in terms of x. Their similarity could be defined on the

basis of possibility measures on the [0, 1] interval [5]:

. ) poss(c;, c)) if poss(¢;,c) < 0.5 5

fuzzy-sim(e;, ¢j) = (1.5 — poss(c;, ) * poss(¢;€)  otherwise )
where

poss(c;,<]) = max(min(j, (x), 1, () ¥ € X (6)

Here, . (x) and o (x /(x) are the membership functions of fuzzy set ¢; and ¢}, respectively. The min( ) and max( )
are standard fuzzy operators, and hence max, (min (g, (x), o (x /(x))) computes the maximum of all the minimums
between pairs y, (x) and p, (x) for all the elements x. ¢; is the complement of ¢ (i.e., pe (x) = 1 — p (x)).

Eq. (5) is one of the most commonly used similarity functions for fuzzy pattern matchlng [6,7], and further-
more, it has been incorporated into some fuzzy inference engines (e.g. software FuzzyJess [26]) for general use.

What we have discussed so far involves only the local similarity for a single cue value pair ¢; and ¢/. For our
proposed model, a global similarity measure is also needed to combine the local similarities. Let us continue to
use the ADR problem as an example to illustrate the development. We now calculate all the local similarities
first and then combine them.

Recall that the cue value for temporal association has been abstracted in Section 3.1.2. It is represented as a
fuzzy set whose membership function is given by Eq. (1). Its cue value stored in Experience N is “likely” with
the membership function being:

(x) = 0, 0<x<05 )
MU;emporal_association *) = 2x — 1’ 05 < X < 1

To calculate the local similarity between these two cue values, we apply Eq. (5) and get
SL (Ctemporal_associationa Ciemporal_association) =092

where Ciemporal association and ctempord]_MOW1t10n represent the cue values of temporal association in the current sit-
uation and the chosen experience in the past, respectively.
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For cues dechallenge and rechallenge, we can employ the same procedure to abstract their actual cue values
and find out their similarities with corresponding cue values store in Experience N. Here, without loss of
generality, we simply assume that Sy (Cacchallenges Cechatienge) = 0-86 and Sp(Crechalienges Crechatienge) = 0-79- For the
cue other explanations, we regard it as a nominal variable since its values “yes” and ‘“no” are not fuzzy.
We assume that the value of this cue is “no” for the current situation. Therefore, we can compute
SL (cother_explanationsa C;ther_explanations) = 1 by applylng Eq (3)

After obtaining the similarities for each of the cue value pairs, our next step is to integrate them into a glo-
bal similarity Sg(V, V') using the following formula, where " and V” represents two sets of cue values:

0, if there exists j € (1,n), for which w; =1 and Si(¢;,c}) < 6
SG(V’ V/> — Z;’:]ijL(Cj,C})
Z;:]W/' ’

where ¢ € [0,1]1s a threshold design parameter determined by the user. w; € [0, 1]1s the weight for cue j, which
represents the relative significance of the cue and is also assigned by the user. To reuse the actions in a past
experience, some important cue or cues are often required to be satisfied. That is, if the value of a required cue
in the current situation is not close to the value of the same cue in a past experience, this experience cannot be
utilized to solve the current problem no matter how similar the other cues are. For example, temporal associ-
ation is a required cue to assess the causal relationship between a drug and an adverse event. If there is no
reasonable temporal relationship between the time of taking the drug and the time that development of an
adverse event occurs, it is almost certain that this adverse event is not caused by the drug even if all the other
factors (e.g., dechallenge) match well. In (8), we deal with this issue by assigning 0 to S5(V, V') when one of the
important cues whose weight is 1 is not similar.

Outside of this exception, global similarity is computed by the second half of the formula, which is the nor-
malized weighted local similarities, making the global similarity lie in [0, 1].

Continue our ADR example. Using Eq. (8), we can calculate the global similarity value between the current
situation and Experience N as:

(8)

otherwise

Se(V, V') =(0.92x 1 +1x0.6+0.86 x 0.7 +0.79 x 0.8)/(1 + 0.6 + 0.7 + 0.8) = 0.89

Here, V refers to the set of observed cue values and V' represents the set of cue values stored in Experience_N.

3.1.5. Feature matching

The feature matching process is carried out through the global similarity measure. We assume that there are
different types of experience knowledge bases, and each base can deal with a specific decision type which could
be inferred from the information associated with the decision task [42]. Once the decision type is determined,
the experience knowledge base (and thus the collection of cues) to be matched is fixed. After that, the current
situation is compared with the past experiences in the selected experience knowledge base. Suppose that Vis a
set of observed cues in the current situation and 7 (i = 1,2,..., M, where M is the number of experiences in
the experience knowledge base) is a set of cues considered in a past experience. The matching is performed
through computing the global similarity between " and V' coordinate-wise using Eq. (8) in the feature space.
The current situation is said to be matched with the past experience to degree o, if S¢(V, V) > « where
o €[0,1]1s a similarity threshold chosen by the user. If more than one experience is matched with the current
situation, the one with the highest global similarity is chosen as the matching result.

3.2. Action evaluation

While situation awareness is to diagnose a problem, action evaluation is a process of selecting a workable
course of action to solve the problem. When applying the RPD methodology to medical decision making, a
course of action may refer to a medical procedure, a treatment plan, etc. For human decision makers, action
evaluation can be achieved through mental simulation: people image how to assemble a course of action, how
the actions may evolve and whether the relevant goal can be fulfilled. For the computational fuzzy RPD
model, we assume that each course of action has an initial state, a terminal state and several actions between
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Action 1 +— Action 2 | -=-=--= Action n

~
b S
~
~

Precondition | Execution | Effect

Fig. 4. A course of actions of the computational fuzzy RPD model.

them. Each action has three parts in sequence: precondition, execution and effect (Fig. 4). While an initial state
is usually the trigger for a series of actions, the terminal state often stands for our final expectation to be
reached after these actions. For instance, the diagnosis result (e.g., a disease) for a patient could be an initial
state to prompt a therapy plan, and in this case the terminal state could be the cure of that disease. The pre-
condition of an action is a set of cues that serve as the prerequisite of execution. For example, a patient’s age,
physical conditions, and medical history may be important factors that must be considered when his/her phy-
sician makes a plausible treatment action. The effect is our expectation for the execution of an action. Note
that the effect is not the actual execution results which may be different from our expectation. Usually, two
actions in sequence have causal relationship, that is, the effect of one action is one of the preconditions for
the subsequent action. Intuitively, the initial state is one of the preconditions for the first action, and the ter-
minal state is the effect of the last action.

To evaluate a course of action, we first compare the initial state (often along with a few other cues) against
the precondition of action I using the similarity measures introduced earlier. If they well match (i.e., their glo-
bal similarity measure is greater than a predetermined threshold), the effect of action 1 and other cues will be
employed to compare with the precondition of action 2. We continue this process until we reach the terminal
state which is one of the effects of the last action. If we use S¢(V1,V"),Sc(V2, V%), ..., Sc(V4, V') to represent
the similarities between the current state and the preconditions of action 1 until action n. Consequently the
degree of our confidence, represented as confidence factor (CF), with this course of action is defined as:

CF=Sc(V,V) @ [Sc(V1,V)) @ S¢(V2,Vy) - SV, V)] 9)

where ® denotes a fuzzy conjunction operator (e.g. algebraic product, Zadeh min operator). ¥ and ¥ repre-
sent the sets of cue values in the current situation and in the prior experience that is selected through the fea-
ture matching process, respectively. Sq(V, V") is added to the formula because it reflects the degree of
appropriateness to use the chosen experience. As such, its value should affect our total confidence with the
selected course of action. CF provides a quantitative way to measure the extent to which the initial state
can be transferred to the terminal state through a course of action. The larger the CF value is, the more con-
fident we are.

To show the action evaluation process, we take the action “Suggest for further analytical studies’ in Expe-
rience_N as an example. This action is the simplest in that it cannot be further divided into lower level actions.
The precondition and effect of this action would be “the strength of signal pair (i.e. a drug and a particular
ADR associated with this drug) in the current patient is evaluated as ‘very likely”” and ““this patient is selected
for further analytical studies”, respectively. Calculating the similarity between the current situation and the
precondition for the action using Eqs. (2) and (8) yields S¢(V1, V) = 1, if we assume that the strength of signal
pair is “very likely” after evaluating the relevant cues, Now we can calculate the confidence factor:
CF =0.89 x 1 =0.89 using the algebraic product operator for the conjunction. If this CF is satisfactory
according to a predefined user criterion, the course of action will be implemented or adjusted by human inter-
vention in order to handle the current situation. Otherwise, a different course of action will be evaluated using
the same procedure. If a satisfactory course of action is not achieved after all the actions have been evaluated,
more relevant information needs to be collected. A new evaluation procedure starts or a novel course of action
is added through human intervention.

The process of selecting a workable course of action is straightforward in the above example. In general,
this is usually the case because it is an important feature of the RPD methodology, which is based on the idea
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that experts spend most of their time and energy on understanding the situation in naturalistic environments.
Once the situation is recognized, properly selecting a course of action almost always automatically follows.
The course of action is usually the one that was successful in the previous, similar situation [18,25].

4. Preliminary evaluation of the model

To establish the proposed model more firmly and also to demonstrate its practical utility, we carried out a
preliminary evaluation experiment. The experiment was related to the ADR detection for post-marketing sur-
veillance described above. More specifically, we sought to assess the model’s ability to quantitatively identify
the strength of the causal relationship between a drug and an adverse effect. We compared the model’s deci-
sions with physicians’ and used the weighted Kappa statistics to establish the extent of their agreements.

4.1. Evaluation design

We targeted the drug Cisapride in this study. The drug was introduced into the marketplace in 1993 upon
approval by the Federal Drug Administration (FDA) for the treatment of gastro-esophageal reflux. It pro-
vided symptomatic relief for this painful, but non-fatal condition. Spontaneous reports linking Cisapride with
a sometimes fatal cardiac ventricular arrhythmia began to appear in the FDA and the medical literature.
Approximately seven years later the drug was removed from the marketplace because of idiosyncratic,
high-risk, adverse reactions.

With approval from the Human Investigations Committee, we undertook a descriptive study of all patients
treated with Cisapride at our Veterans Affairs Medical Center between 1993 and 1999. The sources for data
included the standard hospital discharge abstract database and the pharmacy database. Patient specific data
were linked by patient identifiers, e.g. name, birth date. A statistically de-identified data set was provided to us
for analysis by a hospital data analyst. 1,015 patients were identified that had received Cisapride on one or
more encounters in the institution. Among this cohort, 21 patients were diagnosed with the cardiac arrhythmia
of interest and 303 patients died during the period covered by this study. A group of 10,326 control patients
that never received Cisapride were also identified by randomly selecting controls for every case that were
matched by hospital admission date (+/—30 days). These patients were used to identify the data fields that
would provide useful information for weighting potential causal linkages among signal pairs. After identifying
relevant fields in the data set of the patients who were exposed to Cisapride, we then created a set of 100 hypo-
thetical patients. Each case contained information regarding signal pairs including the administration of the
drug and the adverse event under review as a potential toxic side-effect of the drug administration. Cases var-
ied in the strength of the possible causal association between the drug and an event based on (1) the chrono-
logical association between the drug start date and onset of the adverse event; (2) evidence for dechallenge; (3)
evidence for rechallenge; and (4) presence or absence of an alternative explanation for the adverse event.
Hence, the signal pairs for the hypothetical patients represented a spectrum of causal weights from a “very
likely” to “unlikely” causal link. The data set of the 100 hypothetical patients was comparable to real data
sets of patients who received Cisapride. We created a Microsoft Access database for storing the hypothetical
data that would be readily accessible for continuous scrutiny by a computer program.

The strength of the causal relationship between the drug and an adverse effect is categorized as ‘““very
likely”, “probable”, “possible” and ‘“unlikely”’. Based on the assignment of the likelihood of association
between signal pairs as determined by our proposed fuzzy RPD model, patients would be selected for further
studies (i.e., actions of the proposed model) if the likelihood is high or for no further action if the likelihood is
low. More specifically,

e Signal pairs assigned to “very likely” association or “probable” association will be included in a cohort of
exposed subjects for further analytical studies.

e Signal pairs assigned to “unlikely” association will be excluded from further analytical studies.

e Signal pairs assigned to ““possible’ association will be excluded from further analytical studies. It is conceiv-
able, however, that if the analytical study design adjusts for the weight of the association this group might
be included in further studies.
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The further actions would include the following steps: (1) more information regarding the drug exposure
and adverse outcomes will be sought from the medical records of the selected signal pairs; (2) an appropriate
group of control subjects will be identified; and, (3) an analytical study will be completed. These tasks, how-
ever, are beyond the scope of the present paper and will be addressed in our future work.

These 100 hypothetical patients were used to validate the assignment of causal link strengths by the pro-
posed computational fuzzy RPD model and physicians. The model was used to identify and assign likelihoods
of causal associations between the drug (cause) and adverse event (effect) for the 100 hypothetical patients. To
provide preliminary validation for the capacity of the proposed model, two physicians, both trained in internal
medicine, participated in the experiment. They were provided a general overview of the objectives of the study
and were asked to independently review each of the 100 scenarios and make a judgment regarding the likeli-
hood of a significant causal association between the drug and adverse events. Physicians assigned a numerical
score between 1 and 4 based on the strength of the perceived causality, where 4 means “‘very likely causal rela-
tionship”, 3 is “probable casual relationship”, 2 indicates “possible causal relationship’, and 1 stands for
“unlikely causal relationship”.

We examined agreement between the scores generated by the proposed fuzzy RPD model and those by each
of the two physicians. Because scoring of the causal association was based on ordinal data, we utilized the
weighted Kappa statistic to estimate the levels of agreement [11,32]. The Kappa coefficient is an estimate of
the agreement between two raters after chance agreement is controlled. Kappa scores range between 1 (com-
plete agreement) and 0. Because there are no “absolute’ interpretations of the Kappa coefficients, experts have
offered opinions regarding interpretations of agreement. Landis and Koch [21] suggest that for values of
Kappa greater than 0.75, there is excellent agreement. For values less than 0.4, there is poor agreement,
and for values between 0.40 and 0.75, there is fair to good agreement.

Table 2
Drug causality assessment results generated by the proposed computational fuzzy RPD model and two independent physicians (P1 and P2
mean physician #1 and physician #2, respectively)

Patient Fuzzy Pl P2 Patient Fuzzy Pl P2 Patient Fuzzy Pl P2 Patient Fuzzy Pl P2

1D RPD ID RPD ID RPD ID RPD
model model model model
1 1 1 1 26 2 2 3 51 2 2 2 76 3 3 3
2 3 3 3 27 3 3 4 52 2 2 2 77 2 2 2
3 2 2 3 28 4 4 4 53 3 3 3 78 1 1 1
4 4 4 4 29 3 3 4 54 2 2 2 79 4 4 4
5 4 4 3 30 3 3 3 55 3 3 4 80 4 4 4
6 4 4 4 31 2 2 3 56 3 3 4 81 2 2 2
7 1 1 2 32 2 2 2 57 2 2 2 82 3 3 4
8 4 3 4 33 4 3 4 58 4 4 4 83 3 3 4
9 2 2 3 34 3 3 4 59 2 2 2 84 2 2 2
10 4 4 4 35 2 2 2 60 3 3 3 85 2 2 2
11 3 3 3 36 3 3 3 61 4 4 4 86 2 2 2
12 1 1 1 37 1 1 1 62 3 3 3 87 2 2 2
13 2 2 2 38 3 3 3 63 2 2 2 88 4 4 4
14 2 2 2 39 3 4 4 64 4 4 4 89 2 2 2
15 1 1 1 40 2 2 3 65 2 2 2 90 3 3 4
16 2 2 2 41 2 2 3 66 1 1 1 91 4 4 3
17 4 3 4 42 3 3 4 67 3 3 4 92 1 1 1
18 3 3 3 43 3 3 3 68 2 2 2 93 2 2 2
19 2 2 2 44 4 4 4 69 3 3 4 94 2 2 2
20 1 1 1 45 4 3 4 70 3 3 3 95 4 4 3
21 3 3 3 46 4 3 4 71 3 3 4 96 3 3 4
22 2 2 3 47 2 2 2 72 4 4 3 97 2 2 2
23 3 3 3 48 3 3 4 73 4 4 4 98 2 2 2
24 2 2 3 49 2 2 2 74 2 2 2 99 4 4 3
25 3 3 4 50 3 3 4 75 2 2 2 100 3 3 4
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Table 3
95% confidence intervals for weighted Kappa coefficients from Asymptotic formula and Jackknife method

Kappa coefficient ~ Asymptotic 95% confidence interval  Jackknife 95% confidence interval

Physician 1 vs. fuzzy RPD model  0.939 (0.891, 0.986) (0.891, 0.988)
Physician 2 vs. fuzzy RPD model  0.700 (0.605, 0.792) (0.606, 0.798)
Physician 1 vs. Physician 2 0.657 (0.560, 0.754) (0.561, 0.760)

4.2. Evaluation results

Table 2 summarizes the assignment of scores for the strength of the causal association provided by the pro-
posed computational fuzzy RPD model and the two physician reviewers. The estimate of agreements is as fol-
lows: Kappa =0.939 for physician 1 and the model; Kappa =0.700 for physician 2 and the model;
Kappa = 0.657 for physician 1 and physician 2. These coefficients suggest good to excellent agreement
between the proposed model and the physicians. We computed the confidence intervals using both the asymp-
totic formula and the jackknife method (leave one out method). The results of these two methods agreed to the
second decimal as shown in Table 3.

5. Conclusion

We have developed a novel general-purpose computational fuzzy RPD model using fuzzy logic technology.
Our approach has several desirable features. First, fuzzy sets and fuzzy reasoning are employed to quantita-
tively represent and interpret imprecise information, and handle the uncertainty in the decision-making pro-
cess. Second, local and global similarity measures are created to evaluate the degree of feature matching. These
similarity measures are very flexible since they can not only handle different types of information (e.g. quan-
titative, nominal, and fuzzy) but also incorporate various conditions including the calculation of similarity at
presence of missing information and the aggregation of similarity values even when the required information is
not satisfied. Finally, we have developed a more realistic action evaluation strategy, an issue that has not been
well addressed in the literature. Based on the hospital patient data, we have designed and implemented a pre-
liminary validation experiment for the proposed model in the context of drug ADR detection. The resulting
Kappa statistics indicate excellent agreement between the model and the two physicians.
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