
The Semantics of MALLET–An Agent
Teamwork Encoding Language

Xiaocong Fan1, John Yen1, Michael S. Miller2, and Richard A. Volz2

1 School of Information Sciences and Technology,
The Pennsylvania State University, University Park, PA 16802

2 Department of Computer Science,
Texas A&M University, College Station, TX 77843

{zfan, jyen}@ist.psu.edu, {mmiller, volz}@cs.tamu.edu

Abstract. MALLET is a team-oriented agent specification and pro-
gramming language. In this paper, we define an operational semantics
for MALLET in terms of a transition system. The semantics can be used
to guide the implementation of MALLET interpreters, and to formally
study the properties of team-based agents specified in MALLET.

1 Introduction

Agent teamwork has been the focus of a great deal of research in both theories
[1, 2, 3, 4] and practices [5, 6, 7, 8]. A team is a group of agents having a shared
objective and a shared mental state [2]. While the notion of joint goal (joint in-
tention) provides the glue that binds team members together, it is not sufficient
to guarantee that cooperative problem solving will ensue [3]. The agreement of
a common recipe among team members is essential for them to achieve their
shared objective in an effective and collaborative way [4]. Languages for spec-
ifying common recipes (plans) and other teamwork related knowledge are thus
highly needed both for agent designers to specify and implement cohesive team-
work behaviors, and for agents themselves to easily interpret and manipulate the
mutually committed course of actions so that they could collaborate smoothly
both when everything is progressing as planned and when something goes wrong
unexpectedly.

The term “team-oriented programming” has been used to refer to both the
idea of using a meta-language to describe team behaviors (based on mutual be-
liefs, joint plans and social structures) [9] and the effort of using a reusable team
wrapper for supporting rapid development of agent teams from existing heteroge-
neous distributed agents [10, 11]. In this paper, we take the former meaning and
focus on the semantics of an agent teamwork encoding language called MALLET
(Multi-Agent Logic Language for Encoding Teamwork), which has been devel-
oped and used in the CAST (Collaborative Agents for Simulating Teamwork)
system [8] to specify agents’ individual and teamwork behaviors.

There have been several efforts in defining languages for describing team ac-
tivities [12, 13, 3]. What distinguishes MALLET from the existing efforts is two-

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 69–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 X. Fan et al.

fold. First, MALLET is a generic language for encoding teamwork knowledge.
Teamwork knowledge may include both declarative knowledge and procedural
knowledge. Declarative knowledge (knowing “that”) describes objects, events,
and their relationships. Procedural knowledge (knowing “how”) focuses on the
way needed to obtain a result, where the control information for using the knowl-
edge is embedded in the knowledge itself. MALLET supports the specification of
both declarative and procedural teamwork knowledge. For instance, MALLET
has reserved keywords for specifying team structure-related knowledge (such as
who are in a team, what roles an agent can play) as well as inference knowledge
(in terms of horn-clauses).

Second, MALLET is a richer language for encoding teamwork process. MAL-
LET has constructs for specifying control flows (e.g., sequential, conditional,
iterative) in a team process. Tidhar also adopted such an synthesized approach
[9], where the notions of social structure and plan structure respectively cor-
respond to the team structure and team process in our term. While MALLET
does not describe team structure in the command and control dimension as Tid-
har did, it is more expressive than the simple OR-AND plan graphs and thus
more suitable for describing complex team processes. In addition, MALLET
allows the constraints for task assignments, preconditions of actions, dynamic
agent selection, decision points within a process and termination conditions of
a process to be explicitly specified. The recipe language used in [3] lacks the
support for specifying decision points in a process, which is often desirable in
dealing with uncertainty. While OR nodes of a plan graph [9] can be used for
such a purpose, the language cannot specify processes with complex execution
orders. Team/agent selection (i.e., the process of selecting a group of agents that
have complimentary skills to achieve a given goal) is a key activity for effec-
tive collaboration [14]. No existing languages except MALLET allow the task
of agent-selection to be explicitly specified in a team process. Using MALLET,
a group of agents can collaboratively recruit doers for the subsequent activities
based on the constraints associated with agent-selection statements.

The structure of this paper is as follows. Section 2 gives the syntax of MAL-
LET and Section 3 gives some preparations. We give the transition semantics
in Section 4, and in Section 5 introduce the CAST architecture, which has im-
plemented a MALLET interpreter. Section 6 gives comparisons and discussions
and Section 7 concludes the paper.

2 Syntax

The syntax of MALLET is given in Table 1. A MALLET specification is com-
posed of definitions for agents, teams, membership of a team, team goals, initial
team activities, agent capabilities, roles, roles each agent can play, agents play-
ing a certain role, individual operators, team operators, plans (recipes), and
inference rules.

Operators are atomic domain actions, each of which is associated with pre-
conditions and effects. Individual operators are supposed to be carried out by

The Semantics of MALLET 71

Table 1. The Abstract Syntax of MALLET

CompilationUnit ::= (AgentDef | TeamDef | MemberOf | GoalDef | Start |
CapabilityDef | RoleDef | PlaysRole | FulfilledBy |
IOperDef | TOperDef | PlanDef | RuleDecl)*

AgentDef ::= ’(’ 〈AGENT〉 AgentName ’)’
TeamDef ::= ’(’ 〈TEAM〉 TeamName (’(’ (AgentName)+ ’)’)? ’)’

MemberOf ::= ’(’ 〈MEMBEROF〉 AgentName
(TeamName | ’(’ (TeamName)+ ’)’) ’)’

GoalDef ::= ’(’ 〈GOAL〉 AgentOrTeamName (Cond)+ ’)’
Start ::= ’(’ 〈START〉 AgentOrTeamName Invocation ’)’

CapabilityDef ::= ’(’ 〈CAPABILITY〉 (AgentName | ’(’ (AgentName)+’)’)
(Invocation | ’(’ (Invocation)+ ’)’) ’)’

RoleDef ::= ’(’ 〈ROLE〉 RoleName (Invocation | ’(’(Invocation)+’)’)’)’
PlaysRole ::= ’(’ 〈PLAYSROLE〉 AgentName ’(’ (RoleName)+ ’)’ ’)’

FulfilledBy ::= ’(’ 〈FULFILLEDBY〉 RoleName ’(’ (AgentName)+ ’)’ ’)’
IOperDef ::= ’(’ 〈IOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? ’)’
TOperDef ::= ’(’ 〈TOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? (NumSpec)? ’)’
PlanDef ::= ’(’ 〈PLAN〉 PlanName ’(’ (〈Variable〉)* ’)’

(PreConditionList | EffectsList | TermConditionList)*
’(’ 〈PROCESS〉 MalletProcess ’)’ ’)’

RuleDecl ::= ’(’ (Pred)+ ’)’
Cond ::= Pred | ’(’ 〈NOT〉 Cond ’)’
Pred ::= ’(’ 〈IDENTIFIER〉 (〈IDENTIFIER〉 | 〈VARIABLE〉)* ’)’

Invocation ::= ’(’PlanOrOperName (〈IDENTIFIER〉 | 〈VARIABLE〉)* ’)’
PreConditionList ::= ’(’ 〈PRECOND〉 (Cond)+ (’:IF-FALSE’ (〈SKIP〉 |

〈FAIL〉 | 〈WAIT-SKIP〉 ((〈DIGIT〉)+)? |
〈WAIT-FAIL〉 ((〈DIGIT〉)+)? |
〈ACHIEVE-SKIP〉 | 〈ACHIEVE-FAIL〉))? ’)’

EffectsList ::= ’(’ 〈EFFECTS〉 (Cond)+ ’)’
TermConditionList ::= ’(’〈TERMCOND〉 (〈SUCCESS-SKIP> |

〈SUCCESS-FAIL> | 〈FAILURE-SKIP〉|
〈FAILURE-FAIL〉)? (Cond)+’)’

NumSpec ::= ’(’ 〈NUM〉 (′ =′ |′ <′ |′ >′ |′ ≤′ |′ ≥′) (〈DIGIT 〉)+ ’)’
PrefCondList ::= ’(’ 〈PREFCOND〉 (Cond)+ (’:IF-FALSE’ (〈FAIL〉 |

〈WAIT〉 ((〈DIGIT〉)+)? | 〈ACHIEVE〉))? ’)’
Priority ::= ’(’〈PRIORITY〉 (〈DIGIT〉)+ ’) ’

ByWhom ::= AgentOrTeamName | 〈VARIABLE〉 | MixedList
MixedList ::= ’(’ (〈IDENTIFIER〉 | 〈VARIABLE〉)+ ’)’

Branch ::= ’(’(PrefCondList)?(Priority)? ’(’〈DO〉ByWhom Invocation’)”)’
MalletProcess ::= Invocation | ’(’〈DO〉 ByWhom MalletProcess ’)’

| ’(’〈AGENTBIND〉 VariableList ’(’ (Cond)+ ’)’ ’)’
| ’(’〈JOINTDO〉 (〈AND〉 | 〈OR〉 | 〈XOR〉)?

(’(’ ByWhom MalletProcess ’)’)+ ’)’
| ’(’〈SEQ〉 (MalletProcess)+ ’)’
| ’(’〈PAR〉 (MalletProcess)+ ’)’
| ’(’〈IF〉’(’〈COND〉(Cond)+’)’MalletProcess(MalletProcess)?’)’
| ’(’〈WHILE〉 ’(’ 〈COND〉 (Cond)+ ’)’ MalletProcess ’)’
| ’(’〈FOREACH〉 ’(’ 〈COND〉 (Cond)+’)’MalletProcess’)’
| ’(’〈FORALL〉 ’(’ 〈COND〉 (Cond)+ ‘)’MalletProcess’)’
| ’(’〈CHOICE〉 (Branch)+ ’)’

72 X. Fan et al.

only one agent independently, while team operators can only be invoked by more
than one agent who play specific roles as required by the operators. Before doing
a team action, all the involving agents should synchronize their activities and
satisfy the corresponding preconditions.

Plans are decomposable higher-level actions, which are built upon lower-
level atomic operators hierarchically. Plans play the same role as recipes in the
SharedPlan theory. A plan in MALLET specifies which agents (variables), under
what pre-conditions, can achieve what effects by following what a process, and
optionally under what conditions the execution of the plan can be terminated.

The process component of a plan plays essential role in supporting coordi-
nations among team members. A process can be specified using constructs such
as sequential (SEQ), parallel (PAR), iterative (WHILE, FOREACH, FORALL),
conditional (IF) and choice (CHOICE). An invocation statement is used to di-
rectly execute an action or invoke a plan; since there is no associated doer spec-
ification, each agent coming to such a statement will do it individually. A DO
process is composed of a doer specification and an embedded process. An agent
coming to a DO statement has to check if itself belongs to the doer specification.
If so, the agent simply does the action and moves on; otherwise the agent waits
until being informed of the ending of the action. A joint-do process (JOINTDO)
specifies a share type (i.e., AND, OR, XOR) and a list of (ByWhom process)
pairs. A joint-do of share type “AND” requires all the involved agents acting
simultaneously— the joint-do succeeds only after all the pairs have be executed
successfully. For an “XOR”, exactly one must be executed to avoid potential
conflicts, and for an “OR”, at least one must be executed (with no potential
conflicts). An agent-bind statement is used to dynamically select agents satis-
fying certain constraints (e.g., finding an agent that is capable of some role or
action). An agent-bind statement becomes eligible for execution at the point
when progress of the embedding plan has reached it, as opposed to being exe-
cuted when the plan is entered. The scope for the binding to a variable extends
to either the end of the embedding plan, or the beginning of the next agent-bind
statement that also binds this variable, whichever comes first.

3 Preparation

The following notational conventions are adopted. We use i, j, k,m, n as indexes;
a’s 1 to denote individual agents; A’s to denote sets of agents; b’s to denote
beliefs; g’s to denote goals; h’s to denote intentions; ρ’s to denote plan templates;
p’s to denote plan preconditions; q’s to denote plan effects; e’s to denote plan
termination-conditions; β’s and α’s to denote individual operators; Γ ’s to denote
team operators; s’s and l’s to denote Mallet process statements; ψ’s and φ’s to
denote first-order formulas; t’s to denote terms; bold t and v to denote vector
of terms and variables. A substitution (binding) is a set of variable-term pairs

1 We use a’s to refer to a and a with a subscript or superscript. The same applies to
the description of other notations.

The Semantics of MALLET 73

{[xi/ti]}, where variable xi is associated with term ti (xi does not occur free
in ti). We use θ, δ, η, µ, τ to denote substitutions. Wffs is the set of well-formed
formulas.

Given a team specification in MALLET, let Agent be the set of agent names,
Ioper be the set of individual operators, TOper be the set of team operators,
Plan be the set of plans, B be the initial set of beliefs (belief base), and G be
the initial set of goals (goal base).

Let P = Plan ∪ Toper ∪ Ioper. We call P the plan (template) base, which
consists of all the specified operators and plans. Every invocation of a template
in P is associated with a substitution: each formal parameter of the template is
bound to the corresponding actual parameter. For instance, given a template
(plan ρ (v1 · · · vj)

(pre-cond p1 · · · pk) (effects q1 · · · qm) (term-cond e1 · · · en) (process s)).
A plan call (ρ t1 · · · tj) will instantiate the template with binding θ = {v/t},
where the evaluation of ti may further depend on some other (environment)
binding µ. Note that such instantiation process will substitute ti for all the
occurrence of vi in the precondition, effects, term-condition, and plan body s
(for all 1 ≤ i ≤ j). The instantiation of ρ wrt. binding η is denoted by ρ · η, or
ρη for simplicity.

We define some auxiliary functions. For any operator α, pre(α) and post(α)
return the conjunction of the preconditions and effects specified for α respec-
tively, λ(α) returns the binding if α is an instantiated operator. For team op-
erator Γ , |Γ | returns the minimal number of agents required for executing Γ .
For any plan ρ, in addition to pre(ρ), post(ρ) and λ(ρ) as defined above, tc(ρ),
χp(ρ), χt(ρ), and body(ρ) return the conjunction of termination-conditions, the
precondition type (∈ {skip, fail, wait-skip, wait-fail, achieve-skip, achieve-
fail, ε}), the termination type (∈ {success-skip, success-fail, failure-skip,
failure-fail, ε}), and the plan body of ρ, respectively. The precondition, effects
and termination-condition components of a plan are optional. When they are
not specified, pre(ρ) and post(ρ) return true and χt(ρ) = ε. For any statement
s, isP lan(s) returns true if s is of form (ρ t) or (Do A (ρ t)) for some A,
where ρ is a plan defined in P ; otherwise, it returns false. (SEQ s1 · · · si) is
abbreviated as (s1; · · · ; si). ε is used to denote the empty Mallet process state-
ment. For any statement s, ε; s = s; ε = s. (wait until φ) is an abbreviation of
(while (cond ¬φ) (do self skip)) 2, where skip is a built-in individual operator
with pre(skip) = true and post(skip) = true (i.e., the execution of skip changes
nothing).

Messages Control messages are needed in defining the operational semantics
of MALLET. A control message is a tuple 〈type, aid, gid, pid, · · · 〉, where aid ∈
Agent, gid ∈ Wffs, pid ∈ P ∪{nil}, and type ∈ {sync, ctell , cask , unachievable}.
A message of type sync is used by agent aid to synchronize with the recipient
with respect to the committed goal gid and the activity pid; a message of type

2 The keyword “self” can be used in specifying doers of a process. An agent always
evaluate self as itself.

74 X. Fan et al.

ctell is used by agent aid to tell the recipient about the status of pid; a message
of type cask is used by agent aid to request the recipient to perform pid; a
message of type unachievable is used by agent aid to inform the recipient of the
unachievability of pid.

MALLET has a built-in domain-independent operator send(receivers, msg),
which is used for inter-agent communications. pre(send) = true. We assume that
the execution of send always succeeds. If 〈type, a1, · · · 〉 is a control message, the
effect of send(a2, 〈type, a1, · · · 〉) is that agent a1 will assert the fact (typ a1 · · ·)
into its belief base, and agent a2 will do the same thing when it receives the
message.
Goals and Intentions. A goal g is a pair 〈φ,A〉, where A ⊆ Agent is a set of
agents responsible for achieving a state satisfying φ. When A is a singleton, g is
an individual goal; otherwise, it is a team goal.

An intention slice is of form (ψ,A) ← s, where the execution of statement s
by agents in A is to achieve a state satisfying ψ. An intention is a stack of inten-
tion slices, denoted by [ω0\ · · · \ωk] (0 ≤ k)3, where ωi (0 ≤ i ≤ k) are of form
(ψi, Ai) ← si. ω0 and ωk are the bottom and top slice of the intention, respec-
tively. The ultimate goal state of intention h = [(ψ0, A0) ← s0\ · · · \ωk] is ψ0,
referred to by o(h). The empty intention is denoted by �. For h = [ω0\ · · · \ωk],
[h\ω′] � [ω0\ · · · \ωk\ω′]. If ωi is of form (true,A) ← ε (0 ≤ i ≤ k) for some A,
then h = [ω0\ · · · \ωi−1\ωi+1\ · · · \ωk]. Let H denote the intention set.

Definition 1 (configuration). A Mallet configuration is a tuple 〈B,G,H, θ〉,
where B,G,H, θ are the belief base, the goal base, the intention set, and the
current substitution, respectively4. And, (1) B 	|=⊥, (2) for any goal g ∈ G,
B 	|= g, and g 	|=⊥ hold.

B,G,H, θ are used in defining Mallet configurations, because beliefs, goals,
and intentions of an agent are dynamically changing, and a substitution is re-
quired to store the current environment bindings for free variables. Plan base P
is omitted since we assume P will not be changed at run time.

Similar to [17] we give an auxiliary function to facilitate the definition of
semantics of intentions.

Definition 2. Function agls is defined recursively as: agls(�) = {}, and for
any intention h = [ω0\ · · · \ωk−1\(ψk, Ak) ← sk] (k ≥ 0), agls(h) = {ψk} ∪
agls([ω0\ · · · \ωk−1]).

Note that goals in G are top-level goals specified initially, while function
agls returns a set of achievement goals generated at run time in pursuing some
(top-level) goal in G.

3 The form of intentions here is similar to Rao’s approach [15]. Some researchers also
borrow the idea of fluents to represent intentions, see [16] for an example.

4 There are no global beliefs, goals, and intentions. Mallet configurations are defined
with respect to individual agents. The transitions of an agent team are made up of
the transitions of member agents. Here, B, G, H, θ should all be understood as the
belief base, goal base, intention set, and current substitution of an individual agent.
Of course, for agents in a team, their Bs, Gs and Hs may overlap.

The Semantics of MALLET 75

4 Operational Semantics

Usually there are two ways of defining semantics for an agent-oriented program-
ming language: operational semantics and temporal semantics. For instance,
temporal semantics is given to MABLE [18]; while 3APL [19] and AgentSpeak(L)
[15] have operational semantics, and transition semantics is defined for ConGolog
based on Situation calculus [20]. Temporal semantics is better for property verifi-
cation using existing tools, such as SPIN (a model checking tool which can check
whether temporal formulas hold for the implemented systems), while operational
semantics is better for implementing interpreters for the language.

We define an operational semantics for MALLET in terms of a transition
system, aiming to guide the implementation of interpreters. Each transition cor-
responds to a single computation step which transforms the system from one
configuration to another. A computation run of an agent is a finite or infinite
sequence of configurations connected by transition relation →. The meaning of
an agent is a set of computation runs starting from the initial configuration.
We assume a belief update function BU(B, p), which revises the belief base B
with a new fact p. The details of BU is out the scope of this paper. For conve-
nience, we assume two domain-independent operators over B: unsync(ψ, ρ) and
untell(ψ, s). Their effects are to remove all the predicates that can be unified
with sync(?a, ψ, ρ) and ctell(?a, ψ, s, ?id), respectively, from B.

4.1 Semantics of Beliefs, Goals and Intentions in MALLET

We allow explicit negation in B, and for each b(t) ∈ B, its explicit negation is
denoted by b̃(t). Such treatment enables the representation of ‘unknown’.

Definition 3. Given a Mallet configuration M = 〈B,G,H, θ〉, for any wff φ,
any belief or goal formula ψ, ψ′, any agent a,

1. M |= Bel(φ) iff B |= φ,
2. M |= ¬Bel(φ) iff B |= φ̃,
3. M |= Unknown(φ) iff B 	|= φ and B 	|= φ̃,
4. M |= Goal(φ) iff ∃〈φ′, A〉 ∈ G such that φ′ |= φ and B 	|= φ,
5. M |= ¬Goal(φ) iff M 	|= Goal(φ),
6. M |= Goala(φ) iff ∃〈φ′, A〉 ∈ G such that a ∈ A, φ′ |= φ and B 	|= φ,
7. M |= ¬Goal(φ) iff M 	|= Goal(φ), M |= ¬Goala(φ) iff M 	|= Goala(φ),
8. M |= ψ ∧ ψ′ iff M |= ψ and M |= ψ′,
9. M |= Intend(φ) iff φ ∈ ⋃

h∈H agls(h).

4.2 Failures in MALLET

We start with the semantics of failures in MALLET. MALLET imposes the
following semantics rules on execution failures:

– There are three causes of process failures:
• The precondition is false when an agent is ready to enter a plan or ex-

ecute an operator. The execution continues or terminates depending on
the type of the precondition:

76 X. Fan et al.

skip: skip this plan/operator and execute the next one;
fail: terminate execution and propagate the failure upward;
wait-skip: check the precondition after a certain time period, if it is still
false, proceed to the next plan/operator;
wait-fail: check the precondition after a certain time period, if it is still
false, terminate execution and propagate the failure upward;
achieve-skip: try to bring about the precondition (e.g., triggering an-
other plan that might make the precondition true), if failed after the
attempt then skip this plan/operator and execute the next one;
achieve-fail: try to bring about the precondition, if failed after the at-
tempt then terminate execution and propagate the failure upward;

• An agent monitors the termination condition, if any, of a plan during the
execution of the plan. The execution continues or terminates depending
on the type of the termination condition:
success-skip: if the termination condition is true, then skip the rest of
the plan and proceed to the next statement after the plan;
success-fail: if the termination condition is true, then terminate execu-
tion and propagate the failure upward;
failure-skip: if the termination condition is false, then skip the rest of
the plan and proceed to the next statement after the plan;
failure-fail: if the termination condition is false, then terminate execu-
tion and propagate the failure upward;

• When doing agent-bind, an agent cannot find solutions to the agent
variables;

– Process failures must propagate upward until a choice point:
• If any MalletProcess in a seq returns fail, then the entire seq terminates

execution and fails;
• If any branch of a par fails, the entire par terminates and fails;
• If the body of a while, foreach, or forall fails, the entire iterative

statement terminates execution and fails;
• If any branch of an if fails, the entire if terminates execution and fails;
• If any branch of a JointDo fails, the JointDo terminates and fails;
• If the body of a plan fails, the plan invocation fails;

– Process failures are captured and processed at a choice point:
• If, except for those branches the execution of which has caused process

failures, the choice point still has other alternatives to try, then select
one and the execution continues;

• If the choice point has no more alternatives to try, then propagate the
failure backward/upward until another choice point.

Note 1. Operators are considered atomic from the perspective of MALLET; they
do not have termination conditions. If there is a concern that operators may not
succeed, they should be embedded in a plan and the result be checked, with use
of the termination condition in the case of failure.

The Semantics of MALLET 77

Note 2. MALLET allows a skip or fail mode to be included with preconditions
and termination conditions (supported since version V.3). One argument for
allowing both modes is that continuing operations, even when some precondition
is not satisfied, is what happens in real life. To the extent that we are trying to
allow agent designs to respond to real-life, we need this capability. This argument
is also related to the argument that we wanted to leave as much flexibility as
possible in the MALLET specification so that different implementations and
levels of intelligence could be experimented with.

We thus can formally define rules for failure propagation. Given the current
configuration 〈B,G,H, θ〉, a plan template (ρ v) and an invocation (ρ t) or
(Do A (ρ t)), let η = {v/t}.
– Assert (failed ρ η) into B, if χp(ρ) = fail, and 	 ∃τ · B |= pre(ρ)θητ ;
– Assert (failed ρ η) into B, if χp(ρ) =wait-fail, and 	 ∃τ · B |= pre(ρ)θητ for

neither before nor after the specified waiting time period;
– Assert (failed ρ η) into B, if χp(ρ) =achieve-fail, and 	 ∃τ · B |= pre(ρ)θητ

for neither before nor after the ‘achieve’ attempt;
– Assert (failed ρ η) into B, if χt(ρ) =success-fail, and ∃τ · B |= tc(ρ)θητ ;
– Assert (failed ρ η) into B, if χt(ρ) =failure-fail, and 	 ∃τ · B |= tc(ρ)θητ ;
– Assert (failed s η) into B, where s = (ρ t) or s = (Do A (ρ t)), if ∃τ · B |=

(failed body(ρ) τ);
– Assert (failed s θ) into B, where s = (agent-bind v ψ), if 	 ∃τ · B |= ψθτ ;
– Assert (failed s θ) into B, where s = (l1; · · · lm), if ∃θ′ · B |= (failed l1 θ′);
– Assert (failed s θ) into B, where s = (par l1 · · · lm), if B |= ∨m

i=1 ∃θ′ ·
(failed li θ′);

– Assert (failed s θ) into B, where s = (forall (cond ψ) l1) or
s = (foreach (cond ψ) l1), if B |= ∨

τ∈{η:B|=ψη} ∃θ′ · (failed l1τ θ′);
– Assert (failed s θ) into B, where s = (while (cond ψ) l1), if ∃θ′ · B |=

(failed l1 θ′);
– Assert (failed s θ) into B, where s = (if (cond ψ) l1 l2), if ∃θ′ · B |=

(failed l1 θ′) ∨ (failed l2 θ′);
– Assert (failed s θ) into B, where s = (JointDo X (A1 l1) · · · (Am lm))

(X ∈ {AND,OR,XOR}), if B |= ∨m
i=1 ∃θ′ · (failed li θ′);

– Assert (failed s θ) into B, where s = (choice l1 · · · lm), if B |= ∧m
i=1 ∃θ′ ·

(failed li θ′).

Note that conjunction rather than disjunction is used in the rule about
choice. This is because the semantics of choice allows re-try upon failures: a
choice statement fails only when all the branches have failed.

The semantics of failure is defined in terms of failed .

Definition 4 (semantics of failure). Let s be any Mallet statement.
〈B,G,H, θ〉 |= failed(s) iff ∃θ′ · B |= (failed s θ′).

4.3 Transition System

We use SUCCEED to denote the terminal configuration where the execution
terminates successfully (i.e., all the specified goals and generated intentions are

78 X. Fan et al.

fulfilled); use STOP to denote the terminal configuration where the execution
terminates abnormally—all the remaining goals are unachievable. In particular,
we use STOP(h) to denote the execution of intention h terminates abnormally.

Definition 5. Let h = [h′\(ψk, Ak) ← l1; l2]. UC is defined recursively:
UC (�) = �,
UC (h) = h, if l1 is of form (choice s1 · · · sm);
UC (h) = UC (h′), if l1 is not of form (choice s1 · · · sm).

Function UC (h) returns h′, where h′ is h with all the top intention slices
popped until the first choice point is found.

Definition 6 (Backtracking upon failure). Let h = [h′\(ψk, Ak) ← s\ · · ·],

〈B,G, h, θ〉 |= failed(s),UC (h) 	= �
〈B,G, h, θ〉 → 〈B,G,UC (h), θ〉 , (F1)

〈B,G, h, θ〉 |= failed(s),UC (h) = �
〈B,G, h, θ〉 → STOP(h)

. (F2)

In Definition 6, F1 is a transition rule for backtracking upon process failure.
Rule (F2) states that the execution of an intention stops if there is no choice
point backward.

Definition 7 (Goal selection).

∃g = 〈ψ,A〉 ∈ G, ∃(ρ v) ∈ P, self ∈ A,

∃τ, (θτ has bindings for v), B |= pre(ρ)θτ, and post(ρ)θτ |= ψ

〈B,G, ∅, θ〉 → 〈B,G \ {g}, {[(ψ,A) ← (Do A (ρ v)θτ)]}, θτ〉 , (G1)

∀g = 〈ψ,A〉 ∈ G,∀(ρ v) ∈ P 	 ∃τ · post(ρ)θτ |= ψ

〈B,G, ∅, θ〉 → STOP
, (G2)

〈B, ∅, ∅, θ〉 → SUCCEED
. (G3)

In Definition 7, Rule G1 states that when the intention set is empty, the agent
will choose one goal from its goal set and select an appropriate plan, if there exists
such a plan, to achieve that goal. Rule G2 states that an agent will stop running
if there is no plan can be used to pursue any goal in G. Rule G3 states that an
agent terminates successfully if all the goals and intentions have been achieved.
G1 is the only rule introducing new intentions. It indicates that an agent can
only have one intention in focus (it cannot commit to another intention until
the current one has already been achieved or dropped). G1 can be modified to
allow intention shifting (i.e., pursue multiple top-level goals simultaneously).

Definition 8 (End of intention/intention slice). Let
h1 = [· · · \ωk−1\(ψk, Ak) ← ε],
h2 = [(ψ0, A0) ← s\ · · ·],

The Semantics of MALLET 79

B 	|= ψkθ,UC (h1) 	= �
〈B,G, h1, θ〉 → 〈B,G,UC (h1), θ〉, (EI1)

B 	|= ψkθ,UC (h1) = �
〈B,G, h1, θ〉 → STOP(h1)

, (EI2)

B |= ψkθ

〈B,G, h1, θ〉 → 〈B,G, [· · · \ωk−1], θ〉, (EI3)

h2 ∈ H,B |= ψ0θ

〈B,G,H, θ〉 → 〈B,G,H \ {h2}, θ〉. (EI4)

In Definition 8, EI1 and EI2 are the counterparts of rules F1 and F2, respec-
tively. According to Rule P3 in Definition 15, the achievement goal ψk comes
from the effects condition of some plan. The effects condition associated with a
plan represents an obligation that the plan must achieve. Normally, ψk can be
achieved unless the execution of the plan body failed. But this is not always the
case (e.g., an agent simply had made a wrong choice). It is thus useful to verify
that a plan has, in fact, achieved the effects condition, although this is not a
requirement of MALLET. In the definition, when the execution of the top inten-
tion slice is done (the body becomes ε), the corresponding achievement goal ψk

will be checked. If ψk is false, the execution backtracks to the latest choice point
(EI1) or stops (EI2). If ψk is true, then the top intention slice is popped and
the execution proceeds (EI3). Rule EI4 states that at any stage if the ultimate
goal ψ0 of an intention becomes true, then drop this already fulfilled intention.

Goals in G are declarative abstract goals while intention set H including all
the intermediate subgoals. Definition 7 and Definition 8 give rules for adopting
and dropping goals, respectively. Later we will give other rules that are relevant
to goal adoption and termination (e.g. propagation of failure in plan execution).
Birna van Riemsdijk, et al. [21] analyzed several motivations and mechanisms for
dropping and adopting declarative goals. In their terminology, MALLET sup-
ports goals in both procedural and declarative ways, and employs the landmark
view of subgoals.

As we have explained earlier, the choice construct is used to specify explicit
choice points in a complex team process, and it is a language-level mechanism for
handling process failures. For example, suppose a fire-fighting team is assigned
to extinguish a fire caused by an explosion at a chemical plant. After collecting
enough information (e.g., there are toxic materials in the plant, there are facilities
endangered, etc.), the team needs to decide how to put out the fire. They have to
select one plan if there exist several options. And they have to resort to another
option if one is found to be unworkable.

In syntax, the choice construct is composed of a list of branches, each of
which specifies a plan (a course of actions) and may be associated with prefer-
ence condition and a priority information. The preference condition of a branch is
a collection of first-order formulas; the evaluation of their conjunction determines
whether the branch can be selected under that context. The priority informa-
tion is considered when the preference conditions of more than one branch are
satisfiable.

80 X. Fan et al.

Given a configuration 〈B,G,H, θ〉 and a statement (choice Br1 Br2 · · ·Brm)
where Bri = (prefi proi (DO Ai (ρi ti))), let BR = {Bri|1 ≤ i ≤ m}, BR− ⊆
BR be the set of branches in BR which have already been considered but failed.
We assume that B can track the changes of BR−. Let BR+ = {Brk| ∃τ · B |=
prefk · θτ, 1 ≤ k ≤ m} \ BR−, which is the set of branches that have not been
considered and the associated preference conditions can be satisfied by B. In
addition, let BR⊕ be the subset of BR+ such that all the branches in BR⊕ have
the maximal priority value among those in BR+, and ram(BR⊕) can randomly
select and return one branch from BR⊕.

Definition 9 (Choice construct). Let
h = [ω0\ · · · \(ψk, Ak) ← (choice Br1 Br2 · · ·Brm); s],
h1 = [h\(true,Ak) ← (DO Ai (ρi ti)); cend],
h2 = [h\(true,Ak) ← cend],

ram(BR⊕) = Bri, B
′ = BU(B, BR−.add(Bri))

〈B, G, h, θ〉 → 〈B′, G, h1, θ〉 , (C1)

self ∈ Ai, 〈B, G, h2, θ〉 �|= failed(ρi), B
′ = BU(B, post(ρi)θ)

〈B, G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉 . (C2)

In Definition 9, Rule C1 applies when there exists a workable branch. The
intention h is appended with a new slice ended with cend, which marks explicitly
the scope of the choice point. An agent has to wait (e.g., until more information
becomes available) if there is no workable branch. Rule C2 states that when
an agent comes to the statement cend and the execution of ρi is successful, it
proceeds to the next statement following the choice point. Rule C3 states that if
failed(ρi) is true, the execution returns to the choice point to try another branch.

Note 3. First, when a selected branch has failed, according to Rule F1 the exe-
cution backtracks to this choice point (i.e., the intention of the current configu-
ration becomes h again). When all the branches Bri(1 ≤ i ≤ m) have failed (i.e.,
failed(choice Br1 Br2 · · ·Brm) holds), again by Rule F1 the execution back-
tracks to the next choice point, if there is one. Second, an implementation can
enforce the agents in a group to synchronize with others when backtracking to a
preceding choice point, although this is not required by MALLET, which, as a
generic language, allows experimentation with different levels and forms of team
intelligence. By explicitly marking the scope of choice points, synchronization
can be enforced, if necessary, when agents reaching cend.

Definition 10 (Agent selection). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (agent-bind v φ); s],

∃τ · B |= φθτ

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s], θτ〉. (B1)

The successful execution of an agent-bind statement is to compose the sub-
stitution obtained from evaluating the constraint φ with θ (Rule B1). The ex-
ecution fails if there is no solution to the constraints. Since each agent has an

The Semantics of MALLET 81

individual belief base, one complication can arise here if the individual agents in
Ak reach a different choice for the agents to bind to the agent variables. Conse-
quences can involve vary from two different agents performing an operation that
only one was supposed to do, to some agents successfully determining a binding
while others fail to do so. Different strategies can be adopted when an interpreter
of MALLET is implemented. For instance, in case there is a leader in a team,
one solution is to delegate the binding task to the leader, who informs the results
to other teammates once it finishes. If so, B1 has to be adapted accordingly.

Note 4. Given any configuration 〈B,G,H, θ〉, for any instantiated plan ρ, vari-
ables in body(ρ) are all bounded either by some binding τ where B |= pre(p)θτ ,
or by some preceeding agent-bind statement in body(ρ).

Definition 11 (Sequential execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← l1; · · · ; lm],

〈B, ∅, [(true,Ak) ← l1], θ〉 → 〈B′, ∅, [(true,Ak) ← ε], θ′〉
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l2; · · · ; lm], θ′〉. (SE)

seq is a basic construct for composing complex processes. As shown in Defini-
tion 11, if the execution of l1 can transform B and θ into B′ and θ′ respectively,
the rest will be executed in the context settled by the execution of l1.

Definition 12 (Individual operator execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (Do a (α t)); s],
h2 = [ω0\ · · · \(ψk, Ak) ← (α t); s], where (α v) ∈ Ioper, η = {v/t},

self = a,∃τ,B |= pre(α)θητ,B′ = BU(B, post(α)θητ)
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l; s], θ〉 , (I1)

self 	= a

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← l2; s], θ〉, (I2)

self = a, 	 ∃τ · B |= pre(α)θητ, χp(ρ) = X
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s′; s], θ〉, (I3)

∃τ,B |= pre(α)θητ,B′ = BU(B, post(α)θητ)
〈B,G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉, (I4)

	 ∃τ · B |= pre(α)θητ, χp(ρ) = X
〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s′′; s], θ〉. (I5)

where l and l2 are points for team synchronization, if needed; s′ and s′′ are points
for responding to different precondition types when the precondition is false.

In Definition 12, Rule I1 states that if an agent is the assigned doer a, and
the precondition of α is satisfiable wrt. the agent’s belief base, then the execution
of the individual operator is to update the belief base with the postcondition of
the operator. Rule I2 states that the agents other than the doer a can either

82 X. Fan et al.

synchronize or proceeds, depending on the actual implementation of MALLET
interpreters. In Rule I3, s′ can be replaced by different statements, depending
on the actual precondition types. Rules I4 and I5 are similar to I1 and I3 except
that the intention is of form h2, which by default all the individual agents in Ak

are the doers of α.

Note 5. The statements l, l2, s′, and s′′ are left open for flexibility so that al-
ternate interpretations of agent interaction semantics can be implemented. For
instance, when l and l2 are replaced by ε, each agent in Ak can just do their own
jobs. Alternatively, if we let l = (Do self (send Ak \{self}, 〈ctell, self, ψ0, α〉)),
l2 = (wait until ctell(a, ψ0, α) ∈ B), then the team has to synchronize be-
fore proceeding next. Precondition failures have already been covered by Rules
F1 and F2. Rules I3 and I5 apply when the precondition is false and the
precondition type is of ‘skip’ mode. For instance, if X is skip, then s′ and
s′′ can be ε or statements for synchronization, depending to the agent inter-
action semantics as explained above. If X is wait-skip, it is feasible to let
s′ = (wait until ∃τ · B |= pre(α)θητ); (Do self (α t)), and
s′′ = (wait until ∃τ · B |= pre(α)θητ); (α t).

To execute a team operator, all the involved agents need to synchronize. Let
Y (ψ, Γ) = {a′|sync(a′, ψ, Γ) ∈ B}, which is a set of agent names from whom,
according to the current agent’s beliefs, it has received a synchronization message
wrt. ψ and Γ .

Definition 13 (Team operator execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (Do A (Γ t)); s], where (Γ v) ∈ Toper, η = {v/t},

self ∈ A,∃τ · B |= pre(Γ)θητ, sync(self, ψ0, Γ) 	∈ B

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉 , (T1)

self ∈ A,∃τ · B |= pre(Γ)θητ, sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| < |Γ |
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉 , (T2)

self ∈ A,∃τ,B |= pre(Γ)θητ,

sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| ≥ |Γ |, B′ = BU(B, post(Γ)θητ)
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s3; s], θ〉 , (T3)

self 	∈ A

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s4; s], θ〉, (T4)

self ∈ A, 	 ∃τ · B |= pre(Γ)θητ, χp(Γ) = wait-skip
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s5; s], θ〉 . (T5)

where s1 = (Do self send(A, 〈sync, self, ψ0, Γ 〉)); (Do A (Γ t)),
s2 = (wait until (|Y (ψ0, Γ)| ≥ |Γ |)); (Do A (Γ t)),
s3 = (Do self unsync(ψ0, Γ));(Do self send(Ak \ A, 〈ctell, self, ψ0, Γ 〉)),
s4 = (wait until ∀a ∈ A · ctell(a, ψ0, Γ) ∈ B),
s5 = (wait until ∃τ · B |= pre(Γ)θητ); (Do A (Γ t)).

In Definition 13, Rule T1 states that if an agent itself is one of the assigned doers,
the precondition of the team operator holds, and the agent has not synchronized

The Semantics of MALLET 83

with other agents in A, then it will first send out synchronization messages
before executing Γ . Rule T2 states that an agent has already synchronized with
others, but has not received enough synchronization messages from others, then
it continues waiting. Rule T3 states that the execution of Γ will update B
with the effects of the team operator, and before proceeding, the agent has to
retract the sync messages regarding Γ (to ensure proper agent behavior in case
that Γ needs to be re-executed later) and inform the agents not in A of the
accomplishment of Γ . Rule T4 deals with the case when an agent belongs to
Ak \A—the agent has to wait until being informed of the accomplishment of Γ .
Rule T5 applies when the preconditions of Γ does not hold. Variants of T5 can
be given when χp(Γ) is skip or achieve-skip.

Note 6. Usually in the use of transition systems (as in concurrency semantics)
the aspect of ‘waiting’ is modeled implicitly by the fact that if the proper condi-
tions are not met the rule cannot be applied so that the transition must wait to
take place until the condition becomes true. In this paper, there are a number
of places where ‘waiting’ is included in the transitions explicitly. It is true that
in some places implicit modeling of waiting can be used (say, the rule T2), but
not all the ‘wait’ can be removed without sacrificing the semantics (say, the rule
T4). We use explicit modeling of waiting mainly for two reasons. First, agents
in a team typically need to synchronize with other team members while waiting.
For example, the doers of a team operator need to synchronize with each other
both before and after the execution. Here, the agents are not passively waiting,
but waiting for a certain number of incoming messages. Second, ‘wait’ in the
rules provides a hook for further extensions. For instance, currently the wait
semantics states that an agent has to wait until the precondition of an action to
be executed is satisfied. We can ascribe a “proactive” semantics to the language
such that the doer of an action will proactive bring about a state that can make
the precondition true or seek help from other teammates.

The semantics of JointDo is a little complicated. A joint-do statement im-
plies agent synchronization both at the beginning and at the end of its execution.
Its semantics is given in terms of basic constructs.

Definition 14 (Joint-Do). Let intentions
h1 = [ω0\ · · · \(ψk, Ak) ← (JointDo AND (A′

1 l1) · · · (A′
n ln)); s],

h2 = [ω0\ · · · \(ψk, Ak) ← (JointDo OR (A′
1 l1) · · · (A′

n ln)); s],
h3 = [ω0\ · · · \(ψk, Ak) ← (JointDo XOR (A′

1 l1) · · · (A′
n ln)); s],

⋂n
j=1 A′

j = ∅, self ∈ A′
i

〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J1)
⋂n

j=1 A′
j = ∅, self ∈ A′

i

〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s21; s22; s0; s], θ〉, (J2)

84 X. Fan et al.

self ∈ A′
i, isSelected(A′

i)
〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J3)

self ∈ A′
i,¬isSelected(A′

i)
〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s0; s], θ〉, (J4)

where s0 = (Do self (send
⋃n

j=1 A′
j , 〈sync, self, ψ0, nil〉));

(wait until (∀a ∈ ⋃n
j=1 A′

j ·sync(a, ψ0, nil) ∈ B)); (Do self (unsync ψ0, nil));
s1 = s0; (Do A′

i li); s0,
s21 = (If(cond 	 ∃lx, a · ctell(a, ψ0, lx, 0) ∈ B)

(s3; (Do A′
i li); (Do self (send

⋃n
j=1,j �=i A′

j , 〈ctell, self, ψ0, li, 1〉)))),
s3 = (If (cond 	 ∃a · cask(a, ψ0, li) ∈ B)

((Do self (send
⋃n

j=1,j �=i A′
j , 〈ctell, self, ψ0, li, 0〉));

(Do self (send A′
i \ {self}, 〈cask, self, ψ0, li〉)))),

s22 = (while(cond ∃φx, a · ctell(a, ψ0, lx, 0) ∈ B)
(wait until ∀b ∈ A′

x · ctell(b, ψ0, lx, 1) ∈ B); (Do (untell ψ0, lx))).

In Definition 14, Rule J1 defines semantics for joint-do with share type
“AND”. It states that before and after an agent does its task li, it needs to
synchronize (i.e., s0) with the other teammates wrt. li. A joint-do statement
with share type “OR” requires that at least one sub-process has to be executed.
In Rule J2, the joint-do statement is replaced by s0; s21; s22; s0. Statement s21

states that if an agent has not received any message regarding the start of some
sub-statement lx (i.e., this agent itself is the first ready to execute the joint-do
statement), it will sequentially do (a) s3: if among A′

i this agent is the first
ready to execute li, then tell all other agents not in A′

i regarding the start of
li (i.e., 〈ctell · · · 0〉) and request other agents in A′

i to execute li; (b) agents in
A′

i together execute li; (c) tell other agents not in A′
i the accomplishment of li

(i.e., 〈ctell · · · 1〉). Statement s22 states that if this agent was informed of the
start of some other sub-statement lx, it needs to wait until being informed by
all the doers that lx has been completed. The semantics of joint-do with share
type “XOR” is based on a function isSelected()5: if an agent belongs to the
group of selected agents, it simply synchronizes and executes the corresponding
sub-statement (Rule J3); otherwise, only synchronization is needed (Rule J4).

Plan execution is a process of hierarchical expansion of (sub-)plans. In Defi-
nition 15 below, Rule P1 states that if an agent is not involved, it simply waits
until ρ is done. Before entering a plan, an agent first checks the corresponding
pre-conditions. Rule P2 applies when the precondition is false and Rule P3 ap-
plies when the precondition is true. Rule P2 is defined for the case where the
precondition type is skip. Variants of P2 can be given for other ‘skip’ modes. In
Rule P3, s1 states that on entering a plan, a new intention slice will be appended
where the agent needs to synchronize with others (when everyone is ready the

5 Some negotiation strategies, even social norms [22], can be employed to allow
agents to know each others’ commitments [23] in determining the selected agents
in isSelected. We leave such an issue to the designers of MALLET interpreters.

The Semantics of MALLET 85

synchronization messages are dropped to ensure that this plan can be properly
re-entered later), then execute the plan body instantiated by the environment
binding θ and local binding τ , and then tell other agents not involved in ρ about
the accomplishment of ρ. Rule P4 states that when exiting a plan (i.e., endp is
the only statement in the body of the top intention slice), if ρ has been success-
fully executed, the execution proceeds to the statement after the plan call, with
B being updated with the effects of ρ. Rules P5 and P6 complement Rules F1
and F2. Rule F1 (F2) applies when failed(Do A (ρ t)) holds, that is, when the
execution of the body of ρ fails (including the failures propagated from sub-plans
of ρ). Rule P5 (P6) applies when failed(ρ) holds, that is, when failures emerge
from the precondition or termination condition of ρ. This means, an agent needs
to monitor all the termination conditions of the calling plans. The semantics
of plan invocation of form (ρ t) (i.e., no doers are explicitly specified) can be
similarly defined, except that Ak will be used as the doers of ρ.

Definition 15 (Plan entering, executing and exiting). Let
h1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t)); s],
h′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t))θητ ; sθ],
h′′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t))θητ ; sθ\(post(ρ)θητ,A) ← endp],
h′′′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t)); s\ · · ·], where (ρ v) ∈ Plan, η = {v/t},

self 	∈ A

〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉, (P1)

self ∈ A, 	 ∃τ · B |= pre(ρ)θητ, χp(ρ) = skip
〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s], θ〉, (P2)

self ∈ A,∃τ · B |= pre(ρ)θητ

〈B,G, h1, θ〉 → 〈B,G, [h′
1\(post(ρ)θητ,A) ← s1; endp], θητ〉, (P3)

self ∈ A, 〈B,G, h′′
1 , ι〉 	|= failed(ρ), B′ = BU(B, post(ρ)ι)

〈B,G, h′′
1 , ι〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← sθ], ι〉 , (P4)

self ∈ Ak, 〈B,G, h′′′
1 , θ〉 |= failed(ρ),UC (h′′′

1) 	= �
〈B,G, h′′′

1 , θ〉 → 〈B,G,UC (h′′′
1), θ〉 , (P5)

self ∈ Ak, 〈B,G, h′′′
1 , θ〉 |= failed(ρ),UC (h′′′

1) = �
〈B,G, h′′′

1 , θ〉 → STOP(h′′′
1)

. (P6)

where s0 = (Do self (send Ak, 〈ctell, self, ψ0, ρ〉));
(wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)),

s1 = (Do self (send A, 〈sync, self, ψ0, ρ〉)); (wait until (∀a ∈ A·sync(a, ψ0, ρ) ∈
B));

(Do self (unsync ψ0, ρ)); body(ρ)θητ ; s0,
s2 = (wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)).

Par is a construct that takes a list of processes and executes them in any
order. When each process in the list has completed successfully, the entire par
process is said to complete successfully. If at any point one of the process fails,

86 X. Fan et al.

then the entire par process returns failure and gives up executing any of the
statements after that point.

Intuitively, a parallel statement with k branches requires the current process
(transition) to split itself into k processes. These spawned processes each will
be responsible for the execution of exactly one parallel branch, and they have
to be merged into one process immediately after each has completed its own
responsibility. To prevent the spawned processes from committing to other tasks,
their initial transitions need to be established such that (1) the intention set only
has one intention with one intention slice at its top; (2) the goal base is empty (so
that the transition cannot proceed further after the unique intention has been
completed). Because the original goal set and intention set has to be recovered
after the execution of the parallel statement, we adopt an extra transition, which
has the same components as the original transition except that # is pushed as
the top intention slice, which indicates that this specific intention is suspended.

Definition 16 (Parallel construct). Let h0 = [ω0\ · · · \(ψk, Ak) ← sk; s],
h = [ω0\ · · · \(ψk, Ak) ← sk; s\#], where sk = (par l1 l2 · · · lm),
Tj = 〈B, ∅, [(true,Ak) ← lj], θ〉 →∗ 〈Bj , ∅, [(true,Ak) ← ε], θj〉∧Bj 	|= failed(lj),
and
PB = 〈B,G, h, θ〉 ‖ 〈B, ∅, [(true,Ak) ← l1], θ〉 ‖ · · · ‖ 〈B, ∅, [(true,Ak) ← lm], θ〉,

〈B,G, h0, θ 	|= failed(sk)
〈B,G, h0, θ〉 → PB

, (PA1)
∧m

j=1(Tj), B′ = BU(
⋃m

j=1 Bj , B), θ′ = θ0θ1 · · · θm

〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ′〉 . (PA2)

In Definition 16, Rule PA1 states that when an agent reaches a par state-
ment, if the par statement is not failed, the transition is split into k + 1 parallel
transitions. Rule PA2 states that if all the spawned processes execute success-
fully, the suspended intention will be reactivated with the belief base and sub-
stitution modified.

Now, it is straightforward to define semantics for composite processes. For
instance, the forall construct is an implied par over the condition bindings,
whereas the foreach is an implied seq over the condition bindings. The con-
structs forall and foreach are fairly expressive when the number of choices is
unknown before runtime.

Definition 17 (Composite plans). Let
h1 = [ω0\ · · · \(ψk, Ak) ← (if (cond φ) l1 l2); s],
h2 = [ω0\ · · · \(ψk, Ak) ← (while (cond φ) l); s],
h3 = [ω0\ · · · \(ψk, Ak) ← (foreach (cond φ) l); s],
h4 = [ω0\ · · · \(ψk, Ak) ← (forall (cond φ) l); s],

B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← l1τ ; s]}, θ〉, (S1)

The Semantics of MALLET 87

	 ∃τ · B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← l2; s]}, θ〉, (S2)

B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ ; (while (cond φ) l); s], θ〉,
(S3)

	 ∃τ · B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s], θ〉, (S4)

∃τ1, · · · , τk · ∧k
j=1 B |= φθτj

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ1; · · · ; lτk; s]}, θ〉, (S5)

	 ∃τ · B |= φθτ

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S6)

∃τ1, · · · , τk · ∧k
j=1 B |= φθτj

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← (par lτ1 · · · lτk); s]}, θ〉, (S7)

	 ∃τ · B |= φθτ

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S8)

5 CAST–An Agent Architecture Realizing MALLET

CAST (Collaborative Agents for Simulating Teamwork) is a team-oriented agent
architecture that supports teamwork using a shared mental model (SMM) among
teammates [8]. The CAST kernel includes an implemented interpreter of MAL-
LET. At compile time, CAST translates processes specified in MALLET into
PrT nets (specialized Petri-Nets), which use predicate evaluation at decision
points. CAST supports predicate evaluation using a knowledge base with a Java-
based backward chaining reasoning engine called JARE. The main distinguish-
ing feature of CAST is proactive team behaviors enabled by the fact that agents
within a CAST architecture share the same declarative specification of team
structure and process as well as share explicit declaration of what each agent
can observe. Therefore, every agent can reason about what other teammates are
working on, what the preconditions of teammates’ actions are, whether a team-
mate can observe the information required to evaluate a precondition, and hence
what information might be potentially useful to the teammate. As such, agents
can figure out what information to proactively deliver to teammates, and use a
decision theoretic cost/benefit analysis for doing proactive information delivery.
CAST has been used in several domains including fire-fighting, simulated battle
fields [24]. Examples and practices of using MALLET can be found in [25].

Figure 1 is a screen shot of CAST monitor. CAST monitor can display the
PrT nets (visual representation of MALLET plans) that a team of agents are
working on. Different colors are used to indicate the progress of activities, so
that a human can track the running status of a team process.

It is worth noting that MALLET is designed to be a language for encod-
ing teamwork knowledge, and CAST is just one agent architecture that realizes

88 X. Fan et al.

Fig. 1. The CAST Monitor

MALLET. It is not required that all agents in a team have to be homogeneous
in that they are all implemented in the same way. Agents with different archi-
tectures can form a team and work together with CAST agents as long as they
conform to the semantics of MALLET and the same communication protocols.

6 Comparison and Discussion

We compare MALLET with JACK Teams [26], OWL-S [27], PDDL [28], and
the team-oriented programming framework [9].

JACK Teams [26], instead of providing a higher-level plan-encoding language
like MALLET, extends a traditional programming language (i.e. Java) with spe-
cial statements for programming team activities. In JACK Teams, a team is an
individual reasoning entity characterized by the roles it performs and the roles
it requires others to perform. To form a team is to set up the declared role obli-
gation structure by identifying particular sub-teams capable of performing the
roles to be filled.

JACK Teams has constructs particularly for specifying team-oriented behav-
iors. Teamdata is a concept that allows propagation of beliefs from teams to
sub-teams and vice versa. In a sense, belief propagation in JACK is compara-
ble to the maintenance of SMM in CAST. However, SMM in CAST is a much
more general concept, which includes team plans, progress of team activities,
results of task allocations, decision results of choice points, information needs
graphs, etc. CAST Agents in a team need to proactively exchange information

The Semantics of MALLET 89

(beliefs) to maintain the consistency of their SMM. Statements @team achieve
and @parallel are used in JACK for team goal handling. @team achieve is sim-
ilar to the DO statement in MALLET, except that @team achieve is realized
by sending an event to the involved sub-team while the agents involved in a DO
statement can start to perform the associated activity whenever they reach the
statement along the team process. A @parallel statement can specify success
condition, termination condition, how termination is notified, and whether to
monitor and control the parallel execution. In semantics, @parallel statements
can be simulated using PAR or CHOICE in MALLET. As far as failure han-
dling is concerned, JACK Teams leverages the Java exception mechanism to
throw and catch exceptions while in CAST, CHOICE points are used as places
to catch failures and re-attempt the failed goals if needed, which is much more
flexible in recovery from failure at the team plan level.

OWL-S [27] is an ontology language for describing properties and capabili-
ties of Web services. It enables users and software agents to automatically dis-
cover, invoke, compose, and monitor Web services. Similar to MALLET, OWL-S
provides constructs (such as Sequence, Split, Split+Join, Choice, Unordered, If-
Then-Else, Iterate, etc.) for composing composite processes, to which precondi-
tions and effects can be specified. There exist correspondences between OWL-S
and MALLET. For instance, both ‘Split’ in OWL-S and PAR in MALLET can
be used to specify concurrent activities. The main difference between these two
languages lies in the fact that MALLET is designed for encoding team intelli-
gence where the actors of each activity within a team process need to collaborate
with each other in pursuing their joint goals, while OML-S, as an abstract frame-
work for describing service workflows, does not consider collaboration issues from
the perspective of teamwork.

PDDL (the Planning Domain Definition Language) [28], inspired by the well-
known STRIPS formulations of planning problems, is a standard language for
the encoding of planning domains. PDDL is capable of capturing a wide variety
of complex behaviors using constructs such as seq, parallel, choice, foreach and
forsome. The semantics of processes in PDDL is grounded on a branching time
structure. One key difference between PDDL and MALLET is that PDDL is used
for guiding planning while MALLET is used for encoding the planning results.
The processes defined in PDDL serve as guides for a planner to compose actions
to achieve certain goals, while the processes in MALLET serve as common recipes
for a team of agents to collaborate their behaviors.

In summary, MALLET has been designed as a language for encoding team-
work knowledge, and CAST is just one agent architecture that realizes MAL-
LET. It is not required that all agents in a team have to be homogeneous in that
they are all implemented in the same way. Agents with different architectures
can form a team and work together with CAST agents as long as their kernels
conform to the semantics of MALLET and the same communication protocols.

MALLET does have several limitations. For instance, there is no clear se-
mantics defined for dynamic joining or leaving a team. Also, MALLET does not
specify what to do if agents do not have a plan to reach a goal. Although some of

90 X. Fan et al.

these issues can be left open to agent system designers, providing a language-level
solution might be helpful in guiding the implementation of team-based agent
systems. One way is to extend MALLET with certain build-in meta-plans. For
instance, meta-plans, say, resource-based-planner, can be added so that agents
could execute it to construct a plan when they need but do not have one.

7 Conclusion

MALLET is a language that organizes plans hierarchically in terms of different
process constructs such as sequential, parallel, selective, iterative, or conditional.
It can be used to represent teamwork knowledge in a way that is independent
of the context in which the knowledge is used. In this paper, we defined an
operational semantics for MALLET in terms of a transition system, which is
important in further studying the formal properties of team-based agents speci-
fied in MALLET. The effectiveness of MALLET in encoding complex teamwork
knowledge has already been shown in the CAST system [8], which implements
an interpreter for MALLET using PrT nets as the internal representation of
team process.

Acknowledgments

This research has been supported by AFOSR MURI grant No. F49620-00-1-0326.

References

1. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25:487–512, (1991)
2. Cohen, P.R., Levesque, H.J., Smith, I.A.: On team formation. In Hintikka, J.,

Tuomela, R., eds.: Contemporary Action Theory. (1997)
3. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. Artificial Intelligence 75 (1995) 195–240
4. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artificial

Intelligence 86 (1996) 269–358
5. Tambe, M.: Towards flexible teamwork. Journal of AI Research 7 (1997) 83–124
6. Rich, C., Sidner, C.: Collagen: When agents collaborate with people. In: Proceed-

ings of the International Conference on Autonomous Agents (Agents’97). (1997)
284–291

7. Giampapa, J., Sycara, K.: Team-oriented agent coordination in the RETSINA
multi-agent system. Technical Report CMU-RI-TR-02-34, CMU (2002)

8. Yen, J., Yin, J., Ioerger, T., Miller, M., Xu, D., Volz, R.: CAST: Collaborative
agents for simulating teamworks. In: Proceedings of IJCAI’2001. (2001) 1135–1142

9. Tidhar, G.: Team oriented programming: Preliminary report. In: Technical Report
41, AAII, Australia. (1993)

10. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward team-oriented
programming. In: Agent Theories, Architectures, and Languages. (1999) 233–247

The Semantics of MALLET 91

11. Scerri, P., Pynadath, D.V., Schurr, N., Farinelli, A.: Team oriented programming
and proxy agents: the next generation. In: Proc. of the 1st Inter. Workshop on
Prog. MAS at AAMAS’03. (2003) 131–138

12. Rao, A.S., Georgeff, M.P., Sonenberg, E.A.: Social plans: A preliminary report. In
Werner, E., Demazeau, Y., eds.: Decentralized AI 3 –Proceedings of MAAMAW-
91), Elsevier Science B.V.: Amsterdam, Netherland (1992) 57–76

13. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.:
Planned team activity. In Castelfranchi, C., Werner, E., eds.: Artificial Social
Systems (LNAI-830), Springer-Verlag: Heidelberg, Germany (1992) 226–256

14. Tidhar, G., Rao, A., Sonenberg, E.: Guided team selection. In: Proceedings of the
2nd International Conference on Multi-agent Systems (ICMAS-96). (1996)

15. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW’96, LNAI 1038, Springer-Verlag: Heidelberg, Germany (1996) 42–55

16. Pozos-Parra, P., Nayak, A., Demolombe, R.: Theories of intentions in the frame-
work of situation calculus. In Leite, J., Omicini, A., Torroni, P., Yolum, P.,
eds.: Declarative Agent Languages and Technologies (DALT 2004), LNCS 3476,
Springer-Verlag (2005). In this volume.

17. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak.
In: Proceedings of AAMAS-2003. (2003) 409–416

18. Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model checking multiagent
systems with MABLE. In: Proceedings of AAMAS-2002. (2002) 952–959

19. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents: Goal directed 3APL. In: Proc. of the 1st Inter. Workshop
on Prog. MAS at AAMAS’03. (2003) 111–130

20. Giacomo, G.D., Lesperance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. AI 121 (2000) 109–169

21. van Riemsdijk, M.B., Dastani, M., Dignum, F., Meyer, J.J.C.: Dynamics of declar-
ative goals in agent programming. In Leite, J., Omicini, A., Torroni, P., Yolum, P.,
eds.: Declarative Agent Languages and Technologies (DALT 2004), LNCS 3476,
Springer-Verlag (2005). In this volume.

22. Robertson, D.: A lightweight coordination calculus for agent systems. In Leite,
J., Omicini, A., Torroni, P., Yolum, P., eds.: Declarative Agent Languages and
Technologies (DALT 2004), LNCS 3476, Springer-Verlag (2005). In this volume.

23. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In Leite,
J., Omicini, A., Torroni, P., Yolum, P., eds.: Declarative Agent Languages and
Technologies (DALT 2004), LNCS 3476, Springer-Verlag (2005). In this volume.

24. Yen, J., Fan, X., Sun, S., Hanratty, T., Dumer, J.: Agents with shared mental
models for enhancing team decision-makings. Decision Support Systems, Special
issue on Intelligence and Security Informatics (In press) (2004)

25. Yen, J., et al: CAST manual. Technical report, IST, The Pennsylvania State
University (2004)

26. JACK Teams Manual. http://www.agent-software.com/shared/demosNdocs/
JACK-Teams-Manual.pdf. (2004)

27. OWL-S. http://www.daml.org/services/owl-s/1.0/owl-s.html (2003)
28. McDermott, D.: The formal semantics of processes in PDDL. In: Proc. ICAPS

Workshop on PDDL. (2003)

	Introduction
	Syntax
	Preparation
	Operational Semantics
	Semantics of Beliefs, Goals and Intentions in MALLET
	Failures in MALLET
	Transition System

	CAST--An Agent Architecture Realizing MALLET
	Comparison and Discussion
	Conclusion

