
SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 1

MALLET–A Multi-Agent Logic Language for

Encoding Teamwork

Xiaocong Fan,Member, IEEE,John Yen,Fellow, IEEE,

Michael Miller, Thomas Ioerger,Member, IEEE,and Richard Volz,Fellow, IEEE

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 2

Abstract

MALLET, a Multi-Agent Logic Language for Encoding Teamwork, is intended to enable expression

of teamwork emulating human teamwork, allowing experimentation with different levels and forms of

inferred team intelligence. A consequence of this goal is that the actual teamwork behavior is determined

by the level of intelligence built into the underlying system as well as the semantics of the language. In

this paper, we give the design objectives of MALLET and its syntax, and define an operational semantics

for MALLET in terms of a transition system. We also introduce CAST—an interpreter of MALLET, by

which we have explored various forms of proactive information exchange behavior embodied in human

teamwork. The semantics can be used to guide the implementation of various MALLET interpreters

emulating different forms of team intelligence, and to formally study the properties of team-based agents

specified in MALLET.

I. I NTRODUCTION

Agent teamwork has been the focus of a great deal of research in both theories [1], [2],

[3], [4] and practices [5], [6], [7], [8]. A team is a group of agents having a shared objective

and a shared mental state [2]. While the notion of joint goal (joint intention) provides the glue

that binds team members together, it is not sufficient to guarantee that cooperative problem

solving will ensue [3]. The agreement of a common recipe among team members is essential

for them to achieve their shared objective in an effective and collaborative way [4]. Languages

for specifying common recipes (plans) and other teamwork related knowledge are thus highly

needed both for agent designers to specify and implement cohesive teamwork behaviors, and for

agents themselves to easily interpret and manipulate the mutually committed course of actions

so that they could collaborate smoothly both when everything is progressing as planned and

when something goes wrong unexpectedly.

The term “team-oriented programming” has been used to refer to both the idea of using

a meta-language to describe team behaviors (based on mutual beliefs, joint plans and social

structures) [9] and the effort of using a reusable team wrapper for supporting rapid development

of agent teams from existing heterogeneous distributed agents [10], [11]. In this paper, we take

the former meaning and focus on the semantics of an agent teamwork encoding language called

MALLET (Multi-Agent Logic Language for Encoding Teamwork), which has been developed

and used in the CAST (Collaborative Agents for Simulating Teamwork) system [8] to specify

agents’ individual and teamwork behaviors.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 3

There have been several efforts in defining languages for describing team activities [12],

[13], [3]. What distinguishes MALLET from the existing efforts is three-fold.First, MALLET

is a language that allows experimentation with different levels and forms of team intelligence.

Depending upon the level of intelligence built into the underlying system, one would expect

to program team plans somewhat differently. As more intelligence is built into the underlying

system, the expression of teamwork behavior can become simpler and more natural from a

human understanding perspective.

Second, MALLET is a generic language for encoding teamwork knowledge. Teamwork knowl-

edge may include both declarative knowledge and procedural knowledge. Declarative knowledge

(knowing “that”) describes objects, events, and their relationships. Procedural knowledge (know-

ing “how”) focuses on the way needed to obtain a result, where the control information for using

the knowledge is embedded in the knowledge itself. MALLET supports the specification of both

declarative and procedural teamwork knowledge. For instance, MALLET has reserved keywords

for specifying team structure-related knowledge (such as who are in a team, what roles an agent

can play) as well as inference knowledge (in terms of horn-clauses).

Third, MALLET is a richer language for encoding teamwork process. MALLET has constructs

for specifying control flows (e.g., sequential, conditional, iterative) in a team process. Tidhar also

adopted such an synthesized approach [9], where the notions of social structure and plan structure

respectively correspond to the team structure and team process in our term. While MALLET

does not describe team structure in the command and control dimension as Tidhar did, it is more

expressive than the simple OR-AND plan graphs and thus more suitable for describing complex

team processes. In addition, MALLET allows the constraints for task assignments, preconditions

of actions, dynamic agent selection, decision points within a process and termination conditions

of a process to be explicitly specified. The recipe language used in [3] lacks the support for

specifying decision points in a process, which is often desirable in dealing with uncertainty.

While OR nodes of a plan graph [9] can be used for such a purpose, the language cannot specify

processes with complex execution orders. Team/agent selection (i.e., the process of selecting a

group of agents that have complimentary skills to achieve a given goal) is a key activity for

effective collaboration [14]. No existing languages except MALLET allow the task of agent-

selection to be explicitly specified in a team process. Using MALLET, a group of agents can

collaboratively recruit doers for the subsequent activities based on the constraints associated with

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 4

agent-selection statements.

The structure of this paper is as follows. We give some background in the rest of this section.

Section II summarizes the design objectives of MALLET, and Section III introduces the syntax

of MALLET. We prepare our work in Section IV and give the transition semantics in Section

V. Through an example, we show how to use the transition rules to formally reason about the

behaviors of team-based agents in Section VI. Comparison is given in Section VIII and Section

IX concludes the paper.

A. Background: encoding teamwork knowledge

Several agent architectures have been developed for producing cooperative behaviors among

intelligent agents. GRATE* is an implemented system based on the Joint Responsibility model

[3]. STEAM (a Shell for TEAMwork) [5] is a hybrid teamwork model built on top of the

Soar architecture [15]. The RETSINA model of teamwork (RETSINA-MAS) [7] is built upon

the RETSINA individual agent architecture [16]. JACK Teams [17] provides a team-oriented

modeling framework by extending JACK Intelligent Agents. In addition, Tidhar investigated

team-oriented programming [9] (which is referred to as TOP below) and provided a plan

description language based on plan graphs. In the following, we briefly review the expressivity

of the above-mentioned approaches to encoding teamwork knowledge from four dimensions:

team tasks, dynamic task allocations, decision points, and control constructs.

Team tasks in multi-agent systems can be classified into three categories: atomic team oper-

ators, joint team activities, and shared team plans. Atomic team operators refer to those atomic

actions that cannot be done by single agent and must involve at least two agents to do it. For

instance, lifting a heavy object is a team operator. Before doing a team operator, the associated

preconditions should be satisfied by all the involving agents, and the agents should synchronize

when performing the action. TOP [9] supports team operators.

A joint team activity is a long-term process involving multiple agents. To execute a joint team

activity, it often requires that the involved agents establish joint and individual commitments

to the activity, monitor the execution of the activity, broadcast task failures or task irrelevance

whenever they occur, and replan the activity if necessary. The notion ofteam operatorin STEAM

[5] corresponds to this level of team tasks. A joint team activity is typically associated with a

joint type specifying the execution constraints. For instance, STEAM uses three primitive role

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 5

constraints (a role is an abstract specification of a set of activities in service of a team’s overall

activity) to specify the relationship between sub-activities of a joint team activity: 1) AND-

combination (the whole activity succeeds iff all the sub-activities succeed), 2) OR-combination

(the whole succeeds iff any one sub-activity succeeds), and 3) role-dependency (the execution

of one sub-activity depends on another). Such constraints can be combined to specify more

complex joint team activities.

Shared team plans refer to common recipes that govern the collaboration behaviors of team-

mates in solving complex problems. A shared plan often involves team formation, information

exchange regarding synchronization, task allocation, constraints and temporal ordering of em-

bedded activity invocations, etc. GRATE* [3] has such a language, where trigger conditions

and structure of suboperations can be specified for a recipe. RETSINA-MAS [7] also uses the

concept of shared plans to coordinate individual behaviors, but it lacks an explicit team plan

encoding language. Instead of providing a higher-level planning encoding language, JACK Teams

[17] tried to extend a traditional programming language (i.e. Java) with special statements for

programming team activities. In JACK, team-oriented behaviors are specified in terms of roles

using a construct calledteamplan. TOP [9] usessocial structuresto govern team formation and

it is assumed that each agent participating in the execution of a joint plan knows the details of

the whole plan. STEAM [5] lacks support for encoding shared plans.

Dynamic task assignment means the precise group of agents executing a task in a team plan

is not compiled in, but can be flexibly determined at run time [5]. To allow agent teams to be

adaptive to the dynamic environment, it is desirable for an agent architecture to support dynamic

task assignment, especially at the language level. A STEAM agent determines the candidates

for a task (role) by matching its own (or other agents’) capabilities with the requirements of the

role, while avoiding conflicts between the new task and the candidates’ existing commitments

[5]. Built upon STEAM, a role allocation algorithm was given in [18], where an unassigned

role triggers the creation of a role-allocation-role with the responsibility of assigning an agent

to the domain-level role through inter-proxies interactions. JACK Teams’s support of dynamic

task assignment also depends on the concept of role. Aside from plan body, a JACK teamplan

declares the roles needed and how the task team is to be established. The plan body, specified

in terms of the required roles, is independent of the actual teams performing the roles [17]. Task

assignment in RETSINA is based on constrains reasoning (i.e., authority and social parameters),

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 6

as well as agent capabilities and role requirements [7]. GRATE* agent assigns tasks in a so-

called solution-planning phase [3]. Thus, each agent’s responsibility is already determined before

executing a joint action. Upon recipe failures (e.g., untenable), GRATE* agents need to enter

a replanning process to obtain another recipe workable for the changed environment. In TOP

[9], the dynamic task assignment is done upon plan selection. However, none of these systems

provide a language-level support for specifying task-allocations within team plans.

A complex teamwork process often involves operation steps where all the team members need

to share critical information in order to correctly choose and execute the next course of action.

For instance, an echelon unit’s plan (e.g., the operational order for a brigade of U.S. Army)

usually specifies critical decisions the commanders need to make, and information needed to

make these decisions. These decisions are called decision points in the operational order, and the

information needs of the commander are called Commanders Critical Information Requirements

(CCIR). Based on CCIR, the intelligence officer in the unit and the scouts he/she interacts with

are able to proactively deliver information related to CCIR to the commander for making better

decisions. However, none of the above-mentioned approaches support the coding of decision

points in a team plan.

As far as supports for programming complex team behaviors are concerned, GRATE*, JACK

Teams, and TOP have various control constructs. For instance, GRATE*s recipe language has

constructs PAR, WHILE and IF for composing parallel, iterative and conditional processes [3].

JACK Teams provides supports for complex team goal handling through statement @parallel,

which allows several branches of activity in a teamplan to progress in parallel [17]. A @parallel

statement can specify success condition, termination condition, how termination is notified, and

whether to monitor and control the parallel execution. @parallel is a powerful mechanism because

it allows the specification of when the statement as a whole succeeds: when all branches have

terminated successfully (AND), or when any one branch succeeds (OR). TOP [9] has explicit

operators for sequencing, non-deterministic choice, and parallelism to specify the ordering of

actions.

B. Types of Information Needs in Agent Teamwork

An information need may state that an agent needs to know the truth value of a proposition,

or wants to know the values of some arguments of a predicate, where the values could make

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 7

the predicate true. Information needs exhibit themselves in different ways. For example, prior

to performing a plan or action, an agent typically needs to check whether the plan or action

is both physically and epistemically feasible [19]; an agent may inform the decision maker of

changes which have been made elsewhere in the process and impinge upon the current decision

context [20]; when things go wrong with one agent’s activities, the other group members will

help exert pressure and do whatever they think is necessary (make failure mutually known) for

the collective to succeed in achieving its objective [21]; a team of agents with a joint intention

is required to commit to informing others when an individual agent detects that the goal has

been accomplished, becomes impossible to achieve, or becomes irrelevant [1].

Yen, Fan and Volz [22] formally identified four types of information-needs usually emerging

in the pursuit of team or individual goals.

Action-performing information-needThis type of information-needs enables an agent to

perform certain (complex) actions, which contributes to the agent’s individual commitments to the

whole team. Typically, an action-performing information-need is derived from the preconditions

of the action.

Decision-making information-needAs well as domain actions, those information-needs emerg-

ing from the mental actiondecision-makingis of particular interest. It helps an agent to reduce

uncertainty in the process of making decisions, and consequently enables the agent to ratio-

nally select a course-of-action (COA) from several potential choices. In the terminology of the

SharedPlans theory, this kind of information-needs makes an agent better equipped to adopt

an appropriate intention by reconciling potential intentions serving the same goal. Typically, a

decision-point has several branches to be explored, and each branch is associated with factors

(e.g.,preferenceconstraints) that may affect the process of decision-making. The more factors

are taken into consideration (i.e., the more relevant information is known), the more likely the

decision-maker will make better decisions.

Goal-protection information-needThis type of information-needs allows an agent to protect a

goal (or an intention) from becoming unachievable. Information regarding potential threats to a

goal belongs to this category; knowing such information will help an agent to adjust its behavior

to either remove or avoid the threat to its goal. Information regarding conflicts between potential

desires and the adopted goals also belongs to this category; knowing such information will help

an agent to rationally postpone or drop those unrealistic desires.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 8

Goal-escape information-needA goal ultimately becomes achieved, unachievable or irrel-

evant. This type of information is needed by an agent to drop the impossible or irrelevant

commitments (goals). A goal is achievable and relevant only when certain context holds. Thus,

goal-escape information-needs can typically be derived from the context of the goal under

concern. If any part of the context no longer holds and this is observed by an agent, being

helpful, the agent can inform this fact to the other teammates involved in the goal so that they

can stop pursuing the goal at the earliest possible opportunity.

II. OBJECTIVES

The design of MALLET aims to accomplish the following three objectives.

1. MALLET ought to be a language suitable for encoding agent teamwork knowledge, es-

pecially for composing complex teamwork behaviors. We consider this requirement from three

aspects: expressivity, understandability, and reusability. First, the language should be expressive

enough. As we mentioned before there exist three levels of team tasks. Rather than supporting

one or two levels as did in the previous attempts, we aim to provide three levels of supports

in MALLET. Second, teamwork knowledge (team structure and the team processes) should be

captured in a way that is easy to understand at the team level. This requires a high-level language

(rather than using classical programming languages, say, JACK Teams [17]) designed specifically

for capturing teamwork knowledge.

Third, reusability of knowledge is important for reducing the cost of developing and main-

taining agent systems with such knowledge. Complex cognitive behaviors have been simulated

using existing agent architectures (e.g., Soar [15], ACT-R [23]). The knowledge captured in

these architectures can be easily reusable because the knowledge representation languages (e.g.,

production rules in Soar, and rules in ACT-R) were designed to model general intelligence.

Adhering to the same criterion, MALLET should be designed such that the representation of

teamwork knowledgecan be easily reused.

2. The language should encourage inferred team intelligence. One particular interest of our

research is to empower agents with the capability of anticipating other teammates’ information

needs. An agent’s information needs may emerge before it performs an action or a plan, when

it is required to choose the next course of actions from several alternatives, or when its joint

commitments become violated as detected by other teammates. Therefore, it is desirable that the

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 9

language can support the specification of collaboration constraints, such as action preconditions

and plan termination conditions.

More generally, the language should allow experimentation with different levels and forms

of inferred team intelligence. For example, one might want to include the ability of agents to

observe their environment (thus providing a richer basis for inference[?]), or one might want

to use decision theory to improve the inference used in proactive communication [24]. Equally

important, one might want to represent different levels of synchronization among team members,

and allow experimentation with varying forms of individual and mutual belief among team

members during execution. This latter reflects reality in human teams. Therefore, it is desired

to have a language flexible enough to emulate different levels of human teamwork behavior.

3. The language should allow the specification of adaptive team structure and team process.

For instance, in a dynamic environment, agents often need to adapt their team processes to

environment changes (e.g., recover from failures). In addition, effective human teams often

adjust their team structure by dynamically allocating tasks to members based on their roles and

other factors of the environment. This sets another requirement on the language.

III. SYNTAX

The syntax of MALLET is given in Appendix I. A MALLET specification is composed of

definitions for agents, teams, membership of a team, team goals, initial team activities, agent

capabilities, roles, roles each agent can play, individual operators, team operators, plans (recipes),

and inference rules.

At the top level, MALLET allows expression of knowledge about team structure in terms

of membership of a team and agent-role relationship (i.e. which agent plays which role). For

example, the following specification defines teamfire-fightingTeam, which has three members

playing a role of fighter or ambulance, respectively:

(team fire-fightingTeam (John Tom Sam))

(plays-role John (fighter))

(plays-role Tom (fighter))

(plays-role Sam (ambulance)).

Operators are atomic domain actions, each of which is associated with pre-conditions and

effects. Individual operators are supposed to be carried out by only one agent independently,

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 10

while the performance of a team operator requires more than one agent playing different roles as

required by the operator. Before doing a team action, all the involving agents should synchronize

their activities and satisfy the corresponding preconditions. For example,

(toper co spray(?fid) (num eq 3) · · ·)
states that team operatorco spray requires two agents work on the fire?fid simultaneously.

Plans are decomposable higher-level actions, built upon lower-level actions or atomic operators

hierarchically. Plans play the same role as recipes in the SharedPlans theory [4]. A plan in

MALLET specifies which agents (variables), under what pre-conditions, can achieve what effects

by following what a process, and optionally under what conditions the execution of the plan can

be terminated.

Collaboration among team members can be coded in the process component of a team plan.

A MALLET process is specified in terms of plan invocation statements and composite state-

ments using constructs such as sequential (SEQ), parallel (PAR), iterative (WHILE, FOREACH,

FORALL), conditional (IF) and choice (CHOICE). Aninvocationstatement is used to directly

execute an action or invoke a plan. Since there is no doers associated with invocation statements,

all the agents reaching such a statement will do it individually. ADO process is composed of a

doer specification and an embedded process. An agent coming to aDO statement has to check

if itself belongs to the doer specification. If so, the agent will proceed to perform the embedded

process; otherwise the agent has to wait to be informed of the accomplishment of the embedded

process.

MALLET has a powerful mechanism for dynamically binding agents with tasks. TheAgent-

Bind construct introduces flexibility to a teamwork process in the sense that agent selection can

be done dynamically based on the evaluation of certain teamwork constraints (e.g., finding an

agent with specific capabilities). For example,

(AgentBind(?f) (constraints (playsRole ?f fighter) (closestToF ire ?fid)))

states that the agent variable?f needs to be instantiated with an agent who can play the role

of fighter and is the closest to the fire?fid (?fid already has a value from the preceding

context). The selected agent is then responsible for performing later steps (operators, sub-plans,

or processes) associated with?f. An agent-bind statement becomes eligible for execution at the

point when progress of the embedding plan has reached it, as opposed to being executed when

the plan is entered. The scope for the binding to an agent variable extends to either the end

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 11

of the plan in which the variable appears, or the beginning of the next agent-bind statement

that binds the same variable, whichever comes first. Agent-Bind statements can be anywhere

in a plan, as long as agent variables are instantiated before they are used. External semantics

can be associated with the constraints described in an Agent-Bind statement. For instance, a

collection of constraints can be ordered increasingly in terms of their priorities. In case that not

all the constraints can be satisfied, the agent allocation task is reduced to a distributed constraint

optimization problem: to satisfy as many constraints as possible, and whenever necessary, the

constraint with the least priority is relaxed first.

TheJoint-Do construct provides a means for describing multiple synchronous processes to be

performed by the identified agents or teams in accordance with the specified share type. A share

type is either AND, OR, or XOR. For an AND share type, all of the specified subprocesses

must be executed. For an XOR, exactly one subprocess must be executed, and for an OR, at

least one subprocess must be executed. A Joint-Do statement is not executed until all involved

team members have reached this point in their plans. Furthermore, the statement following a

Joint-Do statement in the team process can not begin until all the involved team members have

completed their part of the Joint-Do.

The Choice construct can be used to explicitly specify decision points in a complex team

process. For example, suppose a fire-fighting team is assigned a task to extinguish a fire caused

by an explosion at a chemical plant. After collecting enough information (e.g., whether there are

noxious chemicals or dangerous facilities near the plant), the team needs to decide how to put

out the fire. They have to determine one plan if there exist several options. A Choice statement

is composed of a list of branches, each of which specifies a plan (a course of actions) and may

be associated with preference conditions and a priority information. The preference conditions

of a branch is a collection of first-order formulas; the evaluation of their conjunction determines

whether the branch is workable under that context. The priority information is used to select a

branch in case that the preference conditions of more than one branch are satisfiable.

As an example, Appendix II gives a MALLET profile for a fire-fighting scenario. In this

example, the fire-fighting team, composed of three fire fighters and an ambulance unit, needs to

extinguish emerging fires. The agents choose how to extinguish a fire depending on the fierceness

level of the fire.extinguishM1 is used when the fierceness level is low, andextinguishM2 is

used when the fierceness level is high. InextinguishM2 , AgentBind is used to select two fighters

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 12

capable of carrying heavy tanks. The selected fighters will perform a team operator (co spray)

that is more effective than the individual operatorspray, while the other fighters simply perform

spray individually.

In response to the capturing of different kinds of information needs at the language level,

MALLET supports the specification of pre-conditions for primitive operators and plans, the

specification of termination conditions for team plans, and the specification of preference condi-

tions for branches of a choice point.PreconditionListdeclares a list of conditions under which an

action (plan, individual or team operator) can be performed. One or more first-order predicates

are allowed to define pre-condition. The conjunction of all predicates in the list is used to evaluate

the pre-condition. Each condition in the precondition list could be one of three values: true, false,

or unknown. An action starts only if the conjunction of the associated preconditions is true. In

case that the conjunction is false or unknown, the behavior type specified in the preconditions

determines how the actors behave. There are six possible behavior types: SKIP, FAIL, WAIT-

SKIP, WAIT-FAIL, ACHIEVE-SKIP, and ACHIEVE-FAIL. SKIP means the plan/operator can

be ignored and the execute proceeds to the next. FAIL means the actors have to terminate

the execution. WAIT-SKIP means the doers can wait for a certain period and skip it if the

precondition is still false. WAIT-FAIL means the doers have to terminate the execution if the

precondition is still false after a certain period. ACHIEVE-SKIP means the doers can try to bring

about the precondition (e.g., triggering a plan to achieve a state satisfying the preconditions),

with the permission to proceed if failed. ACHIEVE-FAIL means the doers can try to bring about

the precondition, but they have to terminate if the attempt failed. The behavior type is optional

and is ‘FAIL’ by default.

PrefCondListis similar toPreconditionList, except that it is used to specify preference condi-

tions. TermConditionsListdeclares the conditions under which an action (plan) can be dropped.

By evaluating these conditions, agents can judge whether the goal of the action is achiev-

able, or whether the motivation of starting the action still holds. Similar to conditions in the

precondition list, termination conditions are 3-valued. Termination type has values SUCCESS-

SKIP, SUCCESS-FAIL, FAILURE-SKIP, and FAILURE-FAIL. SUCCESS-SKIP means, when

the termination condition is true, the doers can skip the rest of the plan and proceed to the next

statement after the plan. SUCCESS-FAIL means, when the termination condition is true, the

doers have to terminate execution. FAILURE-SKIP means, when the termination condition is

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 13

false, the doers can skip the rest of the plan and proceed to the next statement after the plan.

FAILURE-FAIL means, when the termination condition is false, the doers have to terminate

execution. Termination type is optional and is SUCCESS-SKIP by default. For instance,

(plan rescuePeople (?fid) (term-cond (people-alive ?fid 0)(out-of-control ?fid)))

states that the agents involved in executing the planrescuePeople should terminate their actions

if there is no people alive in fire?fid and the fire becomes out of control.

When implementing agent systems, the conditions or constraints captured as such can be used

to establish information flow relationships. For instance, when implementing a team-oriented

agent architecture, to conform to the Joint Intentions theory, the first agent who detects the

violation of a termination condition should commit to informing others of the failure.

IV. PREPARATION FOR THE FORMAL SEMANTICS

The following notational conventions are adopted. We usei, j, k, m, n as indexes;a’s 1 to

denote individual agents;A’s to denote sets of agents;b’s to denote beliefs;g’s to denote goals;

h’s to denote intentions;ρ’s to denote plan templates;p’s to denote plan preconditions;q’s to

denote plan effects;e’s to denote plan termination-conditions;β and α’s to denote individual

operators;Γ’s to denote team operators;s andl’s to denote MALLET-process statements;ψ and

φ’s to denote first-order formulas;t’s to denote terms;~t and~v to denote vector of terms and

variables. A substitution (binding) is a set of variable-term pairs{[xi/ti]}, where variablexi is

associated with termti (xi does not occur free inti). We useθ, δ, η, µ, τ to denote substitutions.

⊥ denotes logical inconsistency,Wffs denotes the set of well-formed formulas.

Given a specification of an agent team in MALLET, letAgent be the set of agent names,

Ioper be the set of individual operators,TOper be the set of team operators,Plan be the set of

plans,B be the initial set of beliefs (belief base), andG be the initial set of goals (goal base).

Let P = Plan∪Toper∪Ioper. We callP template plan base, which consists of all the specified

operators and plans. Every invocation of a template inP is associated with a substitution: each

formal parameter of the template is bound to the corresponding actual parameter. For instance,

given a template

(plan ρ (v1 · · · vj)

1We usea’s to refer toa anda with a subscript or superscript. The same notation applies to the follows.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 14

(pre-cond p1 · · · pk) (effectsq1 · · · qm) (term-cond e1 · · · en) (processs)).

A plan call (ρ t1 · · · tj) will instantiate the template by bindingθ = {~v/~t}, where the evaluation

of ti may further depend on some other environment bindingµ. Note that such instantiation

process will substituteti (1 ≤ i ≤ j) for all the occurrence ofvi in the precondition, effects,

term-condition, and plan bodys. The instantiation ofρ wrt. bindingθ is denoted byρ · θ, or ρθ

for simplicity.

Let P =
⋃

ρ∈P Ξρ, whereΞρ is the set of all the instantiation ofρ. P denotes the universe

of plan instantiations. We also define some auxiliary functions. For any operatorα, pre(α) and

post(α) return the conjunction of the preconditions and effects ofα respectively,λ(α) returns

the binding ifα is an instantiated operator. For team operatorΓ, |Γ| returns the minimal number

of agents required for executingΓ. For any planρ, in addition topre(ρ), post(ρ) andλ(ρ) as

defined above,tc(ρ), χp(ρ), χt(ρ), andbody(ρ) return the conjunction of termination-conditions,

the precondition type (∈ {skip, fail , wait-skip, wait-fail , achieve-skip, achieve-fail, ε}), the

termination type (∈ {success-skip, success-fail, failure-skip , failure-fail , ε}), and the plan body

of ρ, respectively. The precondition, effects and termination-condition components of a plan are

optional. When they are not specified,pre(ρ) and post(ρ) return true and χt(ρ) = ε. For a

statements, isP lan(s) returnstrue if s is of form (ρ ~t) or (Do A (ρ ~t)) for someA, whereρ is

a plan defined inP ; otherwise, it returnsfalse. (SEQ s1 · · · si) is abbreviated as(s1; · · · ; si). ε

is used to denote the empty MALLET process. For any statements, ε; s = s; ε = s. (wait until

φ) is an abbreviation of (while (cond ¬φ) (do self skip)) 2, whereskip is a built-in individual

operator withpre(skip) = true and post(skip) = true (i.e., the execution ofskip changes

nothing).

MessagesA MALLET interpreter needs to implement inter-agent communication at two

levels. First of all, as a teamwork encoding language, MALLET constructs for team operations

(e.g., team operators, JointDo) require that the involved agents synchronize their activities

appropriately. Secondly, communication may also come from the team intelligence built in the

underlying systems or from the specific requirements of domain problems. For instance, based

on the constraints encoded in a MALLET process, agents can proactively anticipate others’

2The keyword “self ” can be used in specifying doers of a process. An agent always evaluateself as itself.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 15

information needs and help them without being asked [8]. This kind of communication is out of

the scope of this paper. We here focus on synchronization-related communication that is required

to enforce the semantics of team operations. However, it is worth noting that 1) MALLET, itself,

does not define communication, although various types of communication can be simulated using

operators; 2) the notion of “control message” below is rather generic. It may or may not directly

correspond to the actual implementations. Control messages are used as a tool to formally

characterize the operational semantics of team synchronizations.

A control message is a tuple〈type, ai, gx, ρk, olist〉, whereai ∈ Agent, gx ∈ Wffs, ρk ∈
P ∪ {nil}, and type ∈ { sync, ctell, cask, unachievable}. A message of typesync is used

by agentai to synchronize with a recipient with respect to the committed goalgx and current

activity ρk; a message of typectell is used by agentai to tell a recipient about the status of

ρk (i.e., starting, ending); a message of typecask is used by agentai to request a recipient to

perform ρk; a message of typeunachievableis used by agentai to inform a recipient of the

unachievability ofρk. olist is a list of extra parameters varying from message type to message

type.

Control messages are wrapped and actually sent by a built-in domain-independent operator

send(receivers, msg), wherepre(send) = true. We assume that the execution ofsend always

succeeds. If〈type, a1, · · · 〉 is a control message, the effect ofsend(a2, 〈type, a1, · · · 〉) is that

agenta1 will assert the fact(type a1 · · ·) into its belief base, and agenta2 will do the same

thing when it receives the message.

Goals and IntentionsA goalg is a pair〈φ,A〉, whereA ⊆ Agent is a set of agents responsible

for achieving a state satisfyingφ. WhenA is a singleton,g is an individual goal; otherwise, it

is a team goal.

An intention slice is of form (ψ,A) ← s, where the execution of statements by agents

in A is to achieve a state satisfyingψ. An intention is a stack of intention slices, denoted

by [ω0\ · · · \ωk] (0 ≤ k)3, where ωi (0 ≤ i ≤ k) are of form (ψi, Ai) ← si. ω0 and ωk

are the bottom and top slice of the intention, respectively. The ultimate goal state of intention

h = [(ψ0, A0) ← s0\ · · · \ωk] is ψ0, referred to byo(h). The empty intention is denoted by>.

3The form of intentions here is similar to Rao’s approach [29]. Some researchers also borrow the idea of fluents to represent

intentions, see [?] for an example.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 16

For h = [ω0\ · · · \ωk], [h\ω′] , [ω0\ · · · \ωk\ω′]. If ωi is of form (true, A) ← ε (0 ≤ i ≤ k)

for someA, thenh = [ω0\ · · · \ωi−1\ωi+1\ · · · \ωk].

Definition 1 (configuration):A MALLET configuration of an agent is a tuple〈B, G, H, θ〉,
where B, G, H, θ are the belief base, the goal base, the set of intentions, and the current

substitution, respectively. And, (1)B 6|=⊥, (2) for any goalg ∈ G, B 6|= g, andg 6|=⊥ hold.

B, G,H, θ are used in defining MALLET configurations, because beliefs, goals, and inten-

tions of an agent are dynamically changing, and a substitution is required to store the current

environment bindings for free variables. Plan baseP is omitted since we assumeP will not be

changed at run time. Dynamic planning is out of the scope of this paper. In the follows, we

write h instead ofH whenH = {h}.
Note that there are no beliefs, goals, and intentions global to all the agents of a team. Mallet

configurations are defined with respect to individual agents. Here,B, G, H, θ should all be

understood as the belief base, goal base, intention set, and current substitution of an individual

agent. Of course, agents in a team may overlap in theirBs, Gs andHs. The transitions of an

agent team are made up of the transitions of member agents.

Similar to [26], we give an auxiliary function to facilitate the definition of semantics of

intentions.

Definition 2: Functionagls is defined recursively as:agls(>) = {},
and for any intentionh = [ω0\ · · · \ωk−1\(ψk, Ak) ← sk] (k ≥ 0),

agls(h) = {ψk} ∪ agls([ω0\ · · · \ωk−1]).

G specifies a set of initial top-level goals, while functionagls returns a set of achievement

goals generated at run time in pursuing some (top-level) goal inG.

V. OPERATIONAL SEMANTICS

Usually there are two options to defining semantics for an agent-oriented programming lan-

guage: operational semantics and temporal semantics. For instance, temporal semantics is given

to MABLE [27]; while 3APL [28], AgentSpeak(L) [29], and ConGolog [30] have operational

semantics in terms of transition systems. Temporal semantics is better for property verification

using existing tools, such as SPIN (a model checking tool which can check whether temporal for-

mulas hold for the implemented systems), while operational semantics is better for implementing

interpreters for the language.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 17

We define an operational semantics for MALLET in terms of a transition system, aiming to

guide the implementation of interpreters. Each transition corresponds to a single computation

step which transforms the system from one configuration to another. A computation run of an

agent is a finite or infinite sequence of configurations connected by transition relation→. The

meaning of an agent is a set of computation runs starting from the initial configuration. We

assume a belief update functionBU(B, p), which revises the belief baseB with a new factp.

The details ofBU is out the scope of this paper. For convenience, we assume two domain-

independent operators overB: unsync(ψ, ρ) anduntell(ψ, s). Their effects are to remove all

the predicates that can be unified withsync(?a, ψ, ρ) andctell(?a, ψ, s, ?id), respectively, from

belief baseB.

A. Semantics of beliefs, goals and intentions in MALLET

Suppose belief baseB allows explicit negations. For anyb(~t) ∈ B, its explicit negation is

denoted bỹb(~t). Such treatment enables the representation ofunknown.

Definition 3: Given a MALLET configurationM = 〈B,G, H, θ〉, for any wff φ, any belief

or goal formulaψ, ψ′, any agenta,

1) M |= Bel(φ) iff B |= φ,

2) M |= ¬Bel(φ) iff B |= φ̃,

3) M |= Unknown(φ) iff B 6|= φ andB 6|= φ̃,

4) M |= Goal(φ) iff ∃〈φ′, A〉 ∈ G such thatφ′ |= φ andB 6|= φ,

5) M |= ¬Goal(φ) iff M 6|= Goal(φ),

6) M |= Goala(φ) iff ∃〈φ′, A〉 ∈ G such thata ∈ A, φ′ |= φ andB 6|= φ,

7) M |= ¬Goala(φ) iff M 6|= Goala(φ),

8) M |= ψ ∧ ψ′ iff M |= ψ andM |= ψ′,

9) M |= Intend(φ) iff φ ∈ ⋃
h∈H agls(h).

Note 1 (Consistency of belief bases):As MALLET is a language for expressing team activ-

ities, there are numerous occasions on which a team or sub-team will be required to evaluate

the same condition expression in a team plan. From a programming language perspective,

one might expect that all agents should achieve the same value (TRUE or FALSE) for the

condition. However, humans do not always achieve this, even when they are supposed to. As

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 18

MALLET is a multi-agent language that is intended to allow emulation of human teamwork,

and each agent are supposed to evaluate conditions with respect to their own belief base, this

raises the question of how to achieve effective collaboration if the individual belief bases are

inconsistent. We leave this issue open because we believe that it is the underlying systems, not the

language, that should employ mechanisms to assure consistency, if that is desired, or to handle

discrepancies (e.g., through failure conditions). For example, we have handled different levels

of intelligence in implicitly managing the belief base consistency (or consistency of decision

making) by incorporating advanced intelligence features in various experimental versions of

CAST [8], [24], which is the underlying system within which MALLET plans are executed.

This approach is consistent with our objective of making MALLET a language within which

experimentation with differ forms of intelligence could be carried out.

B. The Semantics of Variable Bindings

A MALLET plan may have four types of variables: parameters, variables introduced in

preconditions, variables introduced in Agent-Bind statements, variables introduced in conditions

of IF or Iterative statements. They have different semantics of value bindings.

Plan parameters cannot be rebound within the plan. They are passed in and retain their values

throughout the plan. The variables introduced in preconditions can be used within the plan. They

are bound with values when the preconditions are evaluated (i.e., upon entering the plan). Also,

they cannot be rebound and their values are retained throughout the plan.

The variables introduced in Agent-Bind statements areagent variables. They are bound when

the constraints of the corresponding Agent-Bind statements are satisfiable with respect to the

belief base of the agent who is executing the Agent-Bind. The scope for the binding to an agent

variable extends to either the end of the plan, or the beginning of the next Agent-Bind statement

that binds the same variable, whichever comes first.

The scope of variables that are first introduced (not been previously introduced in other

statements) by the condition of an IF process is limited to the IF branch (the bindings carry over

to neither the ‘else’ branch nor the statements after the IF construct). The reason for disallowing

use of variables introduced in thecond of an IF statement within the ‘else’ clause is that one

can not be certain that they were bound in the evaluation of the condition. If a variable is used

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 19

within a plan before it is used in thecond of an IF in the scope of that plan, the variable retains

its binding and is not rebound during evaluation of thecond. In a variable introduced in the

cond of an IF, and then a variable of the same name is used after the IF (or in the ‘else’ clause

– such use is discouraged) it is considered a different variable and must be bound before use. It

does not retain any value from the evaluation of theconf of the IF beyond the scope of the IF.

The variables that are first introduced in the conditions of WHILE statements (not been

previously introduced) are rebound in every iteration. We refer to these asiteration variables.

Other variables used in the conditions of WHILE statements retain their bindings obtained before

the WHILE construct. The case in which an iteration variable is bound in the first iteration and

retains the binding in the rest iterations isnot supported. Non-iteration variables that are bound

in a loop retain their last binding upon exit from the loop. However, iteration variables become

undefined after a WHILE construct, as the variables could have no bindings at all (i.e., the loop

condition may be false the first time it is evaluated). If the same variable name appears after a

WHILE, it is considered a new variable and must be appropriately bound before use.

For constructs such as FORALL and FOREACH, the rule is similar to WHILE, except that in

FORALL and FOREACH all the bindings of variables are obtained the first time the condition is

evaluated. As with a WHILE, iteration variables of FOREACH and FORALL become undefined

after the scope of the FOREACH or FORALL.

The effects conditions of a plan may also introduce variables. This means it must be the case

that a query of the form of the effects condition would return TRUE, with bindings for unbound

variables. Thus, if a query is subsequently made elsewhere in the world, it will succeed unless

something has negated some part of the condition in the interim.

The above semantics of variable bindings is maintained in the ‘substitution’ component of

configurations, with new bindings overwriting previous ones.

C. Failures in MALLET

We start with the semantics of failures in MALLET. MALLET imposes the following seman-

tics rules on execution failures:

• There are three causes of process failures:

– The precondition is false when an agent is ready to enter a plan or execute an operator.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 20

The execution continues or terminates depending on the type of the precondition:

skip: skip this plan/operator and execute the next one;

fail : terminate execution and propagate the failure upward;

wait-skip: check the precondition after a certain time period, if it is still false, proceed

to the next plan/operator;

wait-fail : check the precondition after a certain time period, if it is still false, terminate

execution and propagate the failure upward;

achieve-skip: try to bring about the precondition (e.g., triggering another plan that might

make the precondition true), if failed after the attempt then skip this plan/operator and

execute the next one;

achieve-fail: try to bring about the precondition, if failed after the attempt then terminate

execution and propagate the failure upward;

– An agent monitors the termination condition, if any, of a plan during the execution of

the plan. The execution continues or terminates depending on the type of the termination

condition:

success-skip: if the termination condition is true, then skip the rest of the plan and

proceed to the next statement after the plan;

success-fail: if the termination condition is true, then terminate execution and propagate

the failure upward;

failure-skip : if the termination condition is false, then skip the rest of the plan and

proceed to the next statement after the plan;

failure-fail : if the termination condition is false, then terminate execution and propagate

the failure upward;

– When doingagent-bind, an agent cannot find solutions to the agent variables;

• Process failures must propagate upward until achoicepoint:

– If any MalletProcess in aseq returns fail, then the entireseq terminates execution and

fails;

– If any branch of apar fails, the entirepar terminates and fails;

– If the body of awhile, foreach, or forall fails, the entire iterative statement terminates

execution and fails;

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 21

– If any branch of anif fails, the entireif terminates execution and fails;

– If any branch of aJointDo fails, theJointDo terminates and fails;

– If the body of a plan fails, the plan invocation fails;

• Process failures are captured and processed at achoicepoint:

– If, except for those branches the execution of which has caused process failures,

the choice point still has other alternatives to try, then select one and the execution

continues;

– If the choice point has no more alternatives to try, then propagate the failure back-

ward/upward until anotherchoicepoint.

Note 2: Operators are considered atomic from the perspective of MALLET; they do not have

termination conditions. If there is a concern that operators may not succeed, they should be

embedded in a plan and the result be checked, with use of the termination condition in the case

of failure.

Note 3: MALLET allows a skip or fail mode to be included with preconditions and termi-

nation conditions (supported since version V.3). One argument for allowing both modes is that

continuing operations, even when some precondition is not satisfied, is what happens in real

life. To the extent that we are trying to allow agent designs to respond to real-life, we need

this capability. This argument is also related to the argument that we wanted to leave as much

flexibility as possible in the MALLET specification so that different implementations and levels

of intelligence could be experimented with.

We thus can formally define rules for failure propagation. Given the current configuration

〈B,G, H, θ〉, a plan template(ρ ~v) and an invocation(ρ ~t) or (Do A (ρ ~t)), let η = {~v/~t}.
• Assert(failed ρ η) into B, if χp(ρ) = fail, and 6 ∃τ ·B |= pre(ρ)θητ ;

• Assert(failed ρ η) into B, if χp(ρ) =wait-fail , and 6 ∃τ ·B |= pre(ρ)θητ for neither before

nor after the specified waiting time period;

• Assert (failed ρ η) into B, if χp(ρ) =achieve-fail, and 6 ∃τ · B |= pre(ρ)θητ for neither

before nor after the ‘achieve’ attempt;

• Assert(failed ρ η) into B, if χt(ρ) =success-fail, and∃τ ·B |= tc(ρ)θητ ;

• Assert(failed ρ η) into B, if χt(ρ) =failure-fail , and 6 ∃τ ·B |= tc(ρ)θητ ;

• Assert(failed s η) into B, wheres = (ρ ~t) or s = (Do A (ρ ~t)), if ∃τ ·B |= (failed body(ρ) τ);

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 22

• Assert(failed s θ) into B, wheres = (agent-bind ~v ψ), if 6 ∃τ ·B |= ψθτ ;

• Assert(failed s θ) into B, wheres = (l1; · · · lm), if ∃θ′ ·B |= (failed l1 θ′);

• Assert(failed s θ) into B, wheres = (par l1 · · · lm), if B |= ∨m
i=1 ∃θ′ · (failed li θ′);

• Assert(failed s θ) into B, wheres = (forall (cond ψ) l1) or

s = (foreach (cond ψ) l1), if B |= ∨
τ∈{η:B|=ψη} ∃θ′ · (failed l1τ θ′);

• Assert(failed s θ) into B, wheres = (while (cond ψ) l1), if ∃θ′ ·B |= (failed l1 θ′);

• Assert (failed s θ) into B, wheres = (if (cond ψ) l1 l2), if ∃θ′ · B |= (failed l1 θ′) ∨
(failed l2 θ′);

• Assert(failed s θ) into B, wheres = (JointDo X (A1 l1) · · · (Am lm)) (X ∈ {AND,OR,XOR}),
if B |= ∨m

i=1 ∃θ′ · (failed li θ′);

• Assert(failed s θ) into B, wheres = (choice l1 · · · lm), if B |= ∧m
i=1 ∃θ′ · (failed li θ′).

Note that conjunction rather than disjunction is used in the rule aboutchoice. This is because

the semantics of choice allows re-try upon failures: achoice statement fails only when all the

branches have failed.

The semantics of failure is defined in terms offailed .

Definition 4 (semantics of failure):Let s be any Mallet statement.

〈B,G, H, θ〉 |= failed(s) iff ∃θ′ ·B |= (failed s θ′).

D. Transition system

In the following transition rules, we only give the minimal semantics, allowing different levels

of underlying intelligence to achieve different behaviors emulating different levels of human

teamwork behavior.

We useSUCCEED to denote the terminal configuration where the execution terminates

successfully (i.e., all the specified goals and generated intentions are fulfilled); useSTOP to

denote the terminal configuration where the execution terminates abnormally—all the remaining

goals are unachievable. In particular, we useSTOP(h) to denote the execution of intentionh

terminates abnormally.

Definition 5: Let h = [h′\(ψk, Ak) ← l1; l2]. UC is defined recursively:

UC (>) = >,

UC (h) = h, if l1 is of form (choice s1 · · · sm);

UC (h) = UC (h′), if l1 is not of form (choice s1 · · · sm).

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 23

FunctionUC (h) returnsh′, whereh′ is h with all the top intention slices popped until the

first choice point is found.

Definition 6 (Backtracking upon failure):Let h = [h′\(ψk, Ak) ← s\ · · ·],

〈B, G, h, θ〉 |= failed(s),UC (h) 6= >
〈B, G, h, θ〉 → 〈B, G,UC (h), θ〉 , (F1)

〈B, G, h, θ〉 |= failed(s),UC (h) = >
〈B,G, h, θ〉 → STOP(h)

. (F2)

In Definition 6,F1 is a transition rule for backtracking upon process failure. Rule(F2) states

that the execution of an intention stops if there is no choice point backward.

Definition 7 (Goal selection):

∃g = 〈ψ,A〉 ∈ G, ∃(ρ ~v) ∈ P, self ∈ A,

∃τ, (θτ has bindings for ~v), B |= pre(ρ)θτ, and post(ρ)θτ |= ψ

〈B, G, ∅, θ〉 → 〈B, G \ {g}, {[(ψ, A) ← (Do A (ρ ~v)θτ)]}, θτ〉 , (G1)

∀g = 〈ψ,A〉 ∈ G, ∀(ρ ~v) ∈ P 6 ∃τ · post(ρ)θτ |= ψ

〈B, G, ∅, θ〉 → STOP
, (G2)

〈B, ∅, ∅, θ〉 → SUCCEED
. (G3)

In Definition 7, RuleG1 states that when the intention set is empty, the agent will choose one

goal from its goal set and select an appropriate plan, if there exists such a plan, to achieve that

goal. RuleG2 states that an agent will stop running if there is no plan can be used to pursue any

goal in G. Rule G3 states that an agent terminates successfully if all the goals and intentions

have been achieved.G1 is the only rule introducing new intentions. It indicates that an agent

can only have one intention in focus (it cannot commit to another intention until the current

one has already been achieved or dropped).G1 can be modified to allow intention shifting (i.e.,

pursue multiple top-level goals simultaneously).

Definition 8 (End of intention/intention slice):Let

h1 = [· · · \ωk−1\(ψk, Ak) ← ε],

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 24

h2 = [(ψ0, A0) ← s\ · · ·],

B 6|= ψkθ,UC (h1) 6= >
〈B, G, h1, θ〉 → 〈B, G,UC (h1), θ〉, (EI1)

B 6|= ψkθ,UC (h1) = >
〈B, G, h1, θ〉 → STOP(h1)

, (EI2)

B |= ψkθ

〈B, G, h1, θ〉 → 〈B,G, [· · · \ωk−1], θ〉, (EI3)

h2 ∈ H,B |= ψ0θ

〈B, G,H, θ〉 → 〈B, G, H \ {h2}, θ〉. (EI4)

In Definition 8,EI1 andEI2 are the counterparts of rulesF1 andF2, respectively. According

to RuleP3 in Definition 15, the achievement goalψk comes from the effects condition of some

plan. The effects condition associated with a plan represents an obligation that the plan must

achieve. Normally,ψk can be achieved unless the execution of the plan body failed. But this

is not always the case (e.g., an agent simply had made a wrong choice). It is thus useful to

verify that a plan has, in fact, achieved the effects condition, although this is not a requirement

of MALLET. In the definition, when the execution of the top intention slice is done (the body

becomesε), the corresponding achievement goalψk will be checked. Ifψk is false, the execution

backtracks to the latest choice point (EI1) or stops (EI2). If ψk is true, then the top intention

slice is popped and the execution proceeds (EI3). RuleEI4 states that at any stage if the ultimate

goal ψ0 of an intention becomes true, then drop this already fulfilled intention.

Goals inG are declarative abstract goals while intention setH including all the intermediate

subgoals. Definition 7 and Definition 8 give rules for adopting and dropping goals, respectively.

Later we will give other rules that are relevant to goal adoption and termination (e.g. propagation

of failure in plan execution). Birna van Riemsdijk, et al. [?] analyzed several motivations and

mechanisms for dropping and adopting declarative goals. In their terminology, MALLET supports

goals in both procedural and declarative ways, and employs the landmark view of subgoals.

As we have explained earlier, thechoiceconstruct is used to specify explicit choice points in

a complex team process, and it is a language-level mechanism for handling process failures. For

example, suppose a fire-fighting team is assigned to extinguish a fire caused by an explosion

at a chemical plant. After collecting enough information (e.g., there are toxic materials in the

plant, there are facilities endangered, etc.), the team needs to decide how to put out the fire.

They have to select one plan if there exist several options. And they have to resort to another

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 25

option if one is found to be unworkable.

In syntax, thechoiceconstruct is composed of a list of branches, each of which specifies a plan

(a course of actions) and may be associated with preference condition and a priority information.

The preference condition of a branch is a collection of first-order formulas; the evaluation of

their conjunction determines whether the branch can be selected under that context. The priority

information is considered when the preference conditions of more than one branch are satisfiable.

Given a configuration〈B, G, H, θ〉 and a statement(choiceBr1 Br2 · · ·Brm) whereBri =

(prefi proi (DO Ai (ρi ti))), let BR = {Bri|1 ≤ i ≤ m}, BR− ⊆ BR be the set of branches

in BR which have already been considered but failed. We assume thatB can track the changes

of BR−. Let BR+ = {Brk| ∃τ · B |= prefk · θτ, 1 ≤ k ≤ m} \ BR−, which is the set of

branches that have not been considered and the associated preference conditions can be satisfied

by B. In addition, letBR⊕ be the subset ofBR+ such that all the branches inBR⊕ have the

maximal priority value among those inBR+, and ram(BR⊕) can randomly select and return

one branch fromBR⊕.

Definition 9 (Choice construct):Let

h = [ω0\ · · · \(ψk, Ak) ← (choice Br1 Br2 · · ·Brm); s],

h1 = [h\(true,Ak) ← (DO Ai (ρi ti)); cend],

h2 = [h\(true,Ak) ← cend],

ram(BR⊕) = Bri, B
′ = BU(B, BR−.add(Bri))

〈B, G, h, θ〉 → 〈B′, G, h1, θ〉 , (C1)

self ∈ Ai, 〈B, G, h2, θ〉 6|= failed(ρi), B′ = BU(B, post(ρi)θ)

〈B, G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉 . (C2)

In Definition 9, RuleC1 applies when there exists a workable branch. The intentionh is

appended with a new slice ended withcend, which marks explicitly the scope of the choice

point. An agent has to wait (e.g., until more information becomes available) if there is no

workable branch. RuleC2 states that when an agent comes to the statementcend and the

execution ofρi is successful, it proceeds to the next statement following the choice point. Rule

C3 states that iffailed(ρi) is true, the execution returns to the choice point to try another branch.

Note 4: First, when a selected branch has failed, according to RuleF1 the execution back-

tracks to this choice point (i.e., the intention of the current configuration becomesh again).

When all the branchesBri(1 ≤ i ≤ m) have failed (i.e.,failed(choice Br1 Br2 · · ·Brm)

holds), again by RuleF1 the execution backtracks to the next choice point, if there is one.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 26

Second, an implementation can enforce the agents in a group to synchronize with others when

backtracking to a preceding choice point, although this is not required by MALLET, which, as

a generic language, allows experimentation with different levels and forms of team intelligence.

By explicitly marking the scope of choice points, synchronization can be enforced, if necessary,

when agents reachingcend.

Definition 10 (Agent selection):Let intention

h = [ω0\ · · · \(ψk, Ak) ← (agent-bind ~v φ); s],

∃τ ·B |= φθτ

〈B, G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s], θτ〉. (B1)

The successful execution of an agent-bind statement is to compose the substitution obtained

from evaluating the constraintφ with θ (Rule B1). The execution fails if there is no solution to

the constraints. Since each agent has an individual belief base, one complication can arise here if

the individual agents inAk reach a different choice for the agents to bind to the agent variables.

Consequences can involve vary from two different agents performing an operation that only one

was supposed to do, to some agents successfully determining a binding while others fail to do

so. Different strategies can be adopted when an interpreter of MALLET is implemented. For

instance, in case there is a leader in a team, one solution is to delegate the binding task to the

leader, who informs the results to other teammates once it finishes. If so,B1 has to be adapted

accordingly.

Note 5: Given any configuration〈B,G, H, θ〉, for any instantiated planρ, variables inbody(ρ)

are all bounded either by some bindingτ whereB |= pre(p)θτ , or by some preceding agent-bind

statement inbody(ρ).

Definition 11 (Sequential execution):Let intention

h = [ω0\ · · · \(ψk, Ak) ← l1; · · · ; lm],

〈B, ∅, [(true, Ak) ← l1], θ〉 → 〈B′, ∅, [(true,Ak) ← ε], θ′〉
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l2; · · · ; lm], θ′〉. (SE)

seq is a basic construct for composing complex processes. As shown in Definition 11, if the

execution ofl1 can transformB and θ into B′ and θ′ respectively, the rest will be executed in

the context settled by the execution ofl1.

Definition 12 (Individual operator execution):Let intention

h = [ω0\ · · · \(ψk, Ak) ← (Do a (α ~t)); s],

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 27

h2 = [ω0\ · · · \(ψk, Ak) ← (α ~t); s], where(α ~v) ∈ Ioper, η = {~v/~t},

self = a,∃τ, B |= pre(α)θητ, B′ = BU(B, post(α)θητ)

〈B, G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l; s], θ〉 , (I1)

self 6= a

〈B, G, h, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← l2; s], θ〉, (I2)

self = a, 6 ∃τ ·B |= pre(α)θητ, χp(ρ) = X

〈B,G, h, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s′; s], θ〉, (I3)

∃τ, B |= pre(α)θητ,B′ = BU(B, post(α)θητ)

〈B, G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉, (I4)

6 ∃τ ·B |= pre(α)θητ, χp(ρ) = X

〈B,G, h2, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s′′; s], θ〉. (I5)

where l and l2 are points for team synchronization, if needed;s′ and s′′ are points for responding to different

precondition types when the precondition is false.

In Definition 12, RuleI1 states that if an agent is the assigned doera, and the precondition

of α is satisfiable wrt. the agent’s belief base, then the execution of the individual operator is to

update the belief base with the postcondition of the operator. RuleI2 states that the agents other

than the doera can either synchronize or proceeds, depending on the actual implementation of

MALLET interpreters. In RuleI3, s′ can be replaced by different statements, depending on the

actual precondition types. RulesI4 and I5 are similar toI1 and I3 except that the intention is

of form h2, which by default all the individual agents inAk are the doers ofα.

Note 6: The statementsl, l2, s′, and s′′ are left open for flexibility so that alternate in-

terpretations of agent interaction semantics can be implemented. For instance, whenl and

l2 are replaced byε, each agent inAk can just do their own jobs. Alternatively, if we let

l = (Do self (send Ak \ {self}, 〈ctell, self, ψ0, α〉)),
l2 = (wait until ctell(a, ψ0, α) ∈ B), then the team has to synchronize before proceeding

next. Precondition failures have already been covered by RulesF1 and F2. Rules I3 and

I5 apply when the precondition is false and the precondition type is of ‘skip’ mode. For

instance, ifX is skip, then s′ and s′′ can beε or statements for synchronization, depending

to the agent interaction semantics as explained above. IfX is wait-skip, it is feasible to let

s′ = (wait until ∃τ ·B |= pre(α)θητ); (Do self (α ~t)), and

s′′ = (wait until ∃τ ·B |= pre(α)θητ); (α ~t).

To execute a team operator, all the involved agents need to synchronize. LetY (ψ, Γ) =

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 28

{a′|sync(a′, ψ, Γ) ∈ B}, which is a set of agent names from whom, according to the current

agent’s beliefs, it has received a synchronization message wrt.ψ andΓ.

Definition 13 (Team operator execution):Let intention

h = [ω0\ · · · \(ψk, Ak) ← (Do A (Γ ~t)); s], where(Γ ~v) ∈ Toper, η = {~v/~t},

self ∈ A,∃τ ·B |= pre(Γ)θητ, sync(self, ψ0, Γ) 6∈ B

〈B, G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉 , (T1)

self ∈ A, ∃τ ·B |= pre(Γ)θητ, sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| < |Γ|
〈B, G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉 , (T2)

self ∈ A, ∃τ, B |= pre(Γ)θητ,

sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| ≥ |Γ|, B′ = BU(B, post(Γ)θητ)

〈B, G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s3; s], θ〉 , (T3)

self 6∈ A

〈B, G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s4; s], θ〉, (T4)

self ∈ A, 6 ∃τ ·B |= pre(Γ)θητ, χp(Γ) = wait-skip

〈B, G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s5; s], θ〉. (T5)

wheres1 = (Do self send(A, 〈sync, self, ψ0,Γ〉)); (Do A (Γ ~t)),

s2 = (wait until (|Y (ψ0, Γ)| ≥ |Γ|)); (Do A (Γ ~t)),

s3 = (Do self unsync(ψ0,Γ));(Do self send(Ak \A, 〈ctell, self, ψ0,Γ〉)),
s4 = (wait until ∀a ∈ A · ctell(a, ψ0, Γ) ∈ B),

s5 = (wait until ∃τ ·B |= pre(Γ)θητ); (Do A (Γ ~t)).

In Definition 13, RuleT1 states that if an agent itself is one of the assigned doers, the

precondition of the team operator holds, and the agent has not synchronized with other agents

in A, then it will first send out synchronization messages before executingΓ. Rule T2 states

that an agent has already synchronized with others, but has not received enough synchronization

messages from others, then it continues waiting. RuleT3 states that the execution ofΓ will

updateB with the effects of the team operator, and before proceeding, the agent has to retract

the sync messages regardingΓ (to ensure proper agent behavior in case thatΓ needs to be

re-executed later) and inform the agents not inA of the accomplishment ofΓ. Rule T4 deals

with the case when an agent belongs toAk \ A—the agent has to wait until being informed of

the accomplishment ofΓ. Rule T5 applies when the preconditions ofΓ does not hold. Variants

of T5 can be given whenχp(Γ) is skip or achieve-skip.

Note 7: As we explained earlier, here we use control messages to formally characterize the

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 29

semantics of team synchronizations. Different implementations may employ different strategies

to achieve synchronization.

Note 8: Usually in the use of transition systems (as in concurrency semantics) the aspect of

‘waiting’ is modeled implicitly by the fact that if the proper conditions are not met the rule

cannot be applied so that the transition must wait to take place until the condition becomes

true. In this paper, there are a number of places where ‘waiting’ is included in the transitions

explicitly. It is true that in some places implicit modeling of waiting can be used (say, the rule

T2), but not all the ‘wait’ can be removed without sacrificing the semantics (say, the rule T4). We

use explicit modeling of waiting mainly for two reasons. First, agents in a team typically need to

synchronize with other team members while waiting. For example, the doers of a team operator

need to synchronize with each other both before and after the execution. Here, the agents are

not passively waiting, but waiting for a certain number of incoming messages. Second, ‘wait’ in

the rules provides a hook for further extensions. For instance, currently the wait semantics states

that an agent has to wait until the precondition of an action to be executed is satisfied. We can

ascribe a “proactive” semantics to the language such that the doer of an action will proactive

bring about a state that can make the precondition true or seek help from other teammates.

The semantics ofJointDo is a little complicated. A joint-do statement implies agent synchro-

nization both at the beginning and at the end of its execution. Its semantics is given in terms of

basic constructs.

Definition 14 (Joint-Do): Let intentions

h1 = [ω0\ · · · \(ψk, Ak) ← (JointDo AND (A′1 l1) · · · (A′n ln)); s],

h2 = [ω0\ · · · \(ψk, Ak) ← (JointDo OR (A′1 l1) · · · (A′n ln)); s],

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 30

h3 = [ω0\ · · · \(ψk, Ak) ← (JointDo XOR (A′1 l1) · · · (A′n ln)); s],

⋂n
j=1 A′j = ∅, self ∈ A′i

〈B,G, h1, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J1)

⋂n
j=1 A′j = ∅, self ∈ A′i

〈B, G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s21; s22; s0; s], θ〉, (J2)

self ∈ A′i, isSelected(A′i)

〈B,G, h3, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J3)

self ∈ A′i,¬isSelected(A′i)

〈B,G, h3, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s0; s0; s], θ〉, (J4)

∀A ∈ {A′1, · · · , A′n} · isSelected(A′i) 6∈ B

〈B,G, h3, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s4; s], θ〉, (J5)

wheres0 = (Do self (send
⋃n

j=1 A′j , 〈sync, self, ψ0, nil〉));
(wait until (∀a ∈ ⋃n

j=1 A′j · sync(a, ψ0, nil) ∈ B)); (Do self (unsync ψ0, nil));

s1 = s0; (Do A′i li); s0,

s21 = (If(cond 6 ∃lx, a · ctell(a, ψ0, lx, 0) ∈ B)

(s3; (Do A′i li); (Do self (send
⋃n

j=1,j 6=i A′j , 〈ctell, self, ψ0, li, 1〉)))),

s3 = (If (cond 6 ∃a · cask(a, ψ0, li) ∈ B)

((Do self (send
⋃n

j=1,j 6=i A′j , 〈ctell, self, ψ0, li, 0〉));
(Do self (send A′i \ {self}, 〈cask, self, ψ0, li〉)))),

s22 = (while(cond ∃φx, a · ctell(a, ψ0, lx, 0) ∈ B)

(wait until ∀b ∈ A′x · ctell(b, ψ0, lx, 1) ∈ B); (Do (untell ψ0, lx))),

s4 = selectBranch(A′1, · · · , A′n); (joint-do XOR (A′1 l1) · · · (A′n ln)).

We first describe the meanings of the control messages used in Definition 14. Supposea′ is

the agent under our concern.ctell(a, ψ0, lx, 0) ∈ B meansa′ believes it has received a control

message (of typectell) from agenta saying that activitylx towards achievingψ0 has started.

ctell(a, ψ0, lx, 1) ∈ B meansa′ believes it has received a control message (of typectell) from

agenta saying that activitylx towards achievingψ0 has finished.cask(a, ψ0, lx) ∈ B meansa′

believes it has been asked by agenta to perform activitylx towards achievingψ0.

In Definition 14, RuleJ1 defines semantics for joint-do with share type “AND”. It states

that before and after an agent performs its taskli, it needs to synchronize with the other

teammates involved in thejoint-do statement. Statements0 is used for this purpose: after sending

a synchronization message to others, an agent needs to wait until it has received a similar message

from each of its teammates. The last step ofs0 is to retract all those synchronization messages so

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 31

that the agent can synchronize with other teammates without being affected by previous control

messages.

A joint-do statement with share type “OR” requires that at least one sub-process has to be

executed. In RuleJ2, the joint-do statement is replaced bys0; s21; s22; s0. Statements21 states

that if an agent has not received any message regarding the start of some sub-statementlx (i.e.,

this agent itself is the first ready to execute the joint-do statement), the agent will sequentially

do (a) s3: if among A′
i this agent is the first ready to executeli, then tell all other agents not

in A′
i regarding the start ofli (i.e., 〈ctell · · · 0〉), and request other agents inA′

i to executeli;

(b) agents inA′
i together executeli; (c) tell other agents not inA′

i the accomplishment ofli

(i.e., 〈ctell · · · 1〉). Statements22 states in case that this agent was informed of the start of some

other sub-statementlx, it needs to wait until being informed by all the doers oflx that lx has

been completed. This guarantees that at least one sub-process will be executed. When agents

belonging to different sub-teams reach statements3 at the same time, more than one branch

will be executed parallely. Note that in bothJ1 and J2, it is required that an agent cannot be

involved in more than one branch. ConstructPar can be used in case that an agent needs to do

more than one activity parallely.

The semantics of joint-do with share type “XOR” is based on a special team operatorse-

lectBranch. The first time a team of agents reach ajoint-do with share type “XOR”, they will

use RuleJ5 to collaboratively select one branch from{A′
1, · · · , A′

n} before doing thejoint-

do statement. Some negotiation strategies can be adopted in implementingselectBranch; this

is left to the designers of MALLET interpreters. Here we assume the effect ofselectBranch

is to allow all the agents in the team to assertisSelected(A′
i), if A′

i is selected, into their

respective belief base. RuleJ3 andJ4 are used when the second time the team of agents reach

the joint-do statement. RuleJ3 states that if an agent belongs to the group of selected agents, it

needs to synchronize with other teammates and executes the corresponding sub-statement. Rule

J4 states that if an agent does not belong to the selected group, it simply synchronizes twice

(corresponding to the start and end ofA′
i’s execution ofli, respectively).

Plan execution is a process of hierarchical expansion of (sub-)plans. In Definition 15 below,

Rule P1 states that if an agent is not involved, it simply waits untilρ is done. Before entering

a plan, an agent first checks the corresponding pre-conditions. RuleP2 applies when the pre-

condition is false and RuleP3 applies when the precondition is true. RuleP2 is defined for the

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 32

case where the precondition type isskip. Variants ofP2 can be given for other ‘skip’ modes.

In Rule P3, s1 states that on entering a plan, a new intention slice will be appended where the

agent needs to synchronize with others (when everyone is ready the synchronization messages

are dropped to ensure that this plan can be properly re-entered later), then execute the plan

body instantiated by the environment bindingθ and local bindingτ , and then tell other agents

not involved inρ about the accomplishment ofρ. Rule P4 states that when exiting a plan (i.e.,

endp is the only statement in the body of the top intention slice), ifρ has been successfully

executed, the execution proceeds to the statement after the plan call, withB being updated

with the effects ofρ. RulesP5 and P6 complement RulesF1 and F2. Rule F1 (F2) applies

when failed(Do A (ρ ~t)) holds, that is, when the execution of the body ofρ fails (including

the failures propagated from sub-plans ofρ). Rule P5 (P6) applies whenfailed(ρ) holds, that

is, when failures emerge from the precondition or termination condition ofρ. This means, an

agent needs to monitor all the termination conditions of the calling plans. The semantics of plan

invocation of form(ρ ~t) (i.e., no doers are explicitly specified) can be similarly defined, except

that Ak will be used as the doers ofρ.

Definition 15 (Plan entering, executing and exiting):Let

h1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ ~t)); s],

h′1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ ~t))θητ ; sθ],

h′′1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ ~t))θητ ; sθ\(post(ρ)θητ, A) ← endp],

h′′′1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ ~t)); s\ · · ·], where(ρ ~v) ∈ Plan, η = {~v/~t},

self 6∈ A

〈B,G, h1, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉, (P1)

self ∈ A, 6 ∃τ ·B |= pre(ρ)θητ, χp(ρ) = skip

〈B,G, h1, θ〉 → 〈B, G, [ω0\ · · · \(ψk, Ak) ← s0; s], θ〉, (P2)

self ∈ A, ∃τ ·B |= pre(ρ)θητ

〈B, G, h1, θ〉 → 〈B,G, [h′1\(post(ρ)θητ, A) ← s1; endp], θητ〉, (P3)

self ∈ A, 〈B, G, h′′1 , ι〉 6|= failed(ρ), B′ = BU(B, post(ρ)ι)

〈B, G, h′′1 , ι〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← sθ], ι〉 , (P4)

self ∈ Ak, 〈B, G, h′′′1 , θ〉 |= failed(ρ),UC (h′′′1) 6= >
〈B, G, h′′′1 , θ〉 → 〈B, G,UC (h′′′1), θ〉 , (P5)

self ∈ Ak, 〈B, G, h′′′1 , θ〉 |= failed(ρ),UC (h′′′1) = >
〈B, G, h′′′1 , θ〉 → STOP(h′′′1)

. (P6)

wheres0 = (Do self (send Ak, 〈ctell, self, ψ0, ρ〉));

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 33

(wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)),

s1 = (Do self (send A, 〈sync, self, ψ0, ρ〉)); (wait until (∀a ∈ A · sync(a, ψ0, ρ) ∈ B));

(Do self (unsync ψ0, ρ)); body(ρ)θητ ; s0,

s2 = (wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)).

The semantics of plan invocation of form(ρ ~t) (i.e., there are no doers explicitly specified)

can be similarly defined. In this case, the implicit doers ofρ are the same as the doers of the

higher-level plan (i.e.,Ak). For instance,

(plan p1 (?v1 ?v2)

(process

(seq

(Do (?v1 ?v2) (p2 1 2))

(p3 1 2)

)))

Suppose the doers of planp1 are{a, b, c}, the binding of?v1 and?v2 area andb respectively.

Then, the doers ofp2 are{a, b} while the doers ofp3 are{a,b,c}. Actually, the statement(p3 1 2)

is equivalent to(Do self (p3 1 2)), which requires every doer ofp1 to do p3 separately. One

thing is worth noting is that, before doingp2, both agenta and b need to be at the point of

the Do statement before they can executep2 (e.g., through synchronization). Further, after the

execution ofp2, all three agents must be aware of the accomplishment ofp2 before they proceed

to executep3. Similarly, sincep1 is a team plan, after execution, all the doers ofp3 still need

to let others know the accomplishment or unachievability ofp3.

The situation is not quite so simple when one considers preconditions and effects conditions.

Consider what appears to be a simpler variation of the above example.

(plan p1 (?v1 ?v2)

(process

(seq

(Do (?v1) (p2 1 2))

(Do (?v2) (p3 1 2))

)))

In this case, however, suppose that plan p2 is supposed to result in finding a wumpus (as in the

Wumpus World domain) and plan p3 is supposed to kill the wumpus that was found. One might

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 34

specify an effect condition of

(effects (wumpusfound ?wid)) with planp2, and a pre-condition

(pre-cond (wumpusfound ?wid))

with plan p3. That is, agent?v1 is to find a wumpus and?v2 is to kill it. Suppose that agent

?v1 will place a fact (wumpusfound ?wid) in its knowledgebase after finding a wumpus. Since

each agent evaluates the conditions with respect to their own belief base, one problem is that,

unless some mechanism is supplied to transfer the wumpusfound information from?v1 to ?v2,

plan p3 may block indefinitely (if the precondition type is WAIT) waiting for its pre-condition

to be satisfied.

However, as we have claimed earlier, the actual behavior of a given program depends upon not

only the MALLET program, but the underlying implementation, as well. This allows different

levels of intelligence to be implemented to emulate different levels of human teamwork behavior.

For example, we have explored several mechanisms in CAST variants. In the simplest CAST

implementation [8],?v1 can explicitlysendthe information relevant to the effects to the teammate

?v2. When the proactive information delivery behavior is implemented within CAST [24], the

information about wumpusfound, which is considered as one of?v2’s information needs, can be

automatically sent to?v2. In another experimental version of CAST[?], which allows reasoning

about the visibilities of agents, the information would not be sent if?v1 could reason that?v2

could also see the wumpus.

Par is a construct that takes a list of processes and executes them in any order. When

each process in the list has completed successfully, the entirepar process is said to complete

successfully. If at any point one of the process fails, then the entirepar process returns failure

and gives up executing any of the statements after that point.

Intuitively, a parallel statement withk branches requires the current process (transition) to

split itself intok processes. These spawned processes each will be responsible for the execution

of exactly one parallel branch, and they have to be merged into one process immediately after

each has completed its own responsibility. To prevent the spawned processes from committing to

other tasks, their initial transitions need to be established such that (1) the intention set only has

one intention with one intention slice at its top; (2) the goal base is empty (so that the transition

cannot proceed further after the unique intention has been completed). Because the original goal

set and intention set has to be recovered after the execution of the parallel statement, we adopt

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 35

an extra transition, which has the same components as the original transition except that# is

pushed as the top intention slice, which indicates that this specific intention issuspended.

Definition 16 (Parallel construct):Let h0 = [ω0\ · · · \(ψk, Ak) ← sk; s],

h = [ω0\ · · · \(ψk, Ak) ← sk; s\#], wheresk = (par l1 l2 · · · lm),

Tj = 〈B, ∅, [(true, Ak) ← lj], θ〉 →∗ 〈Bj , ∅, [(true,Ak) ← ε], θj〉 ∧Bj 6|= failed(lj), and

PB = 〈B, G, h, θ〉 ‖ 〈B, ∅, [(true, Ak) ← l1], θ〉 ‖ · · · ‖ 〈B, ∅, [(true, Ak) ← lm], θ〉,

〈B, G, h0, θ 6|= failed(sk)

〈B, G, h0, θ〉 → PB
, (PA1)

∧m
j=1(Tj), B′ = BU(

⋃m
j=1 Bj , B), θ′ = θ0θ1 · · · θm

〈B, G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ′〉 . (PA2)

In Definition 16, RulePA1 states that when an agent reaches apar statement, if the par

statement is not failed, the transition is split intok + 1 parallel transitions. RulePA2 states that

if all the spawned processes execute successfully, the suspended intention will be reactivated

with the belief base and substitution modified.

Now, it is straightforward to define semantics for composite processes. For instance, theforall

construct is an impliedpar over the condition bindings, whereas theforeach is an impliedseq

over the condition bindings. The constructsforall and foreach are fairly expressive when the

number of choices is unknown before runtime.

Definition 17 (Composite plans):Let

h1 = [ω0\ · · · \(ψk, Ak) ← (if (cond φ) l1 l2); s],

h2 = [ω0\ · · · \(ψk, Ak) ← (while (cond φ) l); s],

h3 = [ω0\ · · · \(ψk, Ak) ← (foreach (cond φ) l); s],

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 36

h4 = [ω0\ · · · \(ψk, Ak) ← (forall (cond φ) l); s],

B |= φθτ

〈B, G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← l1τ ; s]}, θ〉, (S1)

6 ∃τ ·B |= φθτ

〈B,G, {h1}, θ〉 → 〈B, G, {[ω0\ · · · \(ψk, Ak) ← l2; s]}, θ〉, (S2)

B |= φθτ

〈B, G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ ; (while (cond φ) l); s], θ〉, (S3)

6 ∃τ ·B |= φθτ

〈B, G, {h2}, θ〉 → 〈B, G, {[ω0\ · · · \(ψk, Ak) ← s], θ〉, (S4)

∃τ1, · · · , τk ·
∧k

j=1 B |= φθτj

〈B, G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ1; · · · ; lτk; s]}, θ〉, (S5)

6 ∃τ ·B |= φθτ

〈B, G, {h3}, θ〉 → 〈B, G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S6)

∃τ1, · · · , τk ·
∧k

j=1 B |= φθτj

〈B,G, {h4}, θ〉 → 〈B, G, {[ω0\ · · · \(ψk, Ak) ← (par lτ1 · · · lτk); s]}, θ〉, (S7)

6 ∃τ ·B |= φθτ

〈B, G, {h4}, θ〉 → 〈B, G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S8)

The above has defined the semantics for MALLET statements from an individual agent’s

perspective. In a teamwork setting, each agent can be viewed as a transition system. An agent

drives towards its goal through evaluating and executing its intentions based on the agent’s

belief base. Collaborative teamwork behaviors are realized through the interactions among the

transition systems. Particularly, to have a joint goal and shared team plans, agents in a team

will know when and how to synchronize with other teammates as they work on their joint and

individual intentions.

VI. A RUN OF AN EXAMPLE AGENT TEAM

We can use the operational semantics to formally reason about the behaviors of team-based

agents. In this section, using the example in Appendix II we show how team-based agents execute

team plans using the transition rules.

Suppose the MALLET profile in Appendix II is shared by a team of agents{a0, a1, a2, a3},
wherea0, a1, anda2 are firefighters anda3 is an ambulance unit. Also, suppose the initial transi-

tions of all the agents are the same:c0 = 〈B, G, ∅, ∅〉, whereG = {〈T1 (extinguished fire1)〉},

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 37

and the fact(fireLevel fire1 high) ∈ Bai
(Bai

is the belief base of agentai). Below we focus

on a potential sequence of transitions of agenta1.

1. Sincea1 ∈ T1, and the antecedents of rule G1 hold whenρ is workOnFire and τ =

{?f/fire1}, c0 can thus be transformed using rule G1 into

c1 = 〈B, ∅, [(ψ0, T1) ← (Do T1 (workOnFire fire1))], θ1〉, (rule G1)

whereψ0 = (extinguished fire1), θ1 = {?f/fire1}.
2. Since the top of the intention inc1 is a plan invocation, applying ruleP3 transformsc1 to

c2 = 〈B, ∅, [h0\((extinguished fire1), T1) ← s1; s2; s3; body(workOnFire)θ1; s4; endp], θ1〉,
(rule P3)

where

h0 =[(ψ0, T1) ← (Do T1 (workOnFire fire1))],

s1 =(Do self (send T1, 〈sync, self, ψ0,workOnFire〉)),

s2 =(wait until (∀a ∈ T1 · sync(a, ψ0,workOnFire) ∈ B)),

s3 =(Do self (unsync ψ0,workOnFire))

s4 =(Do self (send T1, 〈ctell, self, ψ0,workOnFire, 1〉)),

(wait until (∀a ∈ T1 · ctell(a, ψ0,workOnFire, 1) ∈ B))

3. s1 invokes the execution of individual operatorsend, which results in belief update.

c3 = 〈B3, ∅, [h0\((extinguished fire1), T1) ← s2; s3; body(workOnFire)θ1; s4; endp], θ1〉,
(rule I1)

whereB3 = B ∪ {sync(a1, ψ0,workOnFire)}.
4. When not getting all the synchronization messages, agenta1 has to do a skip action

(unfolding the loop).

c4 = 〈B3, ∅, [h0\((extinguished fire1), T1) ← skip; s2; s3; body(workOnFire)θ1; s4; endp], θ1〉,
(rule S3)

5. Agenta1 can proceed until after getting all the synchronization messages from teammates.

c5 = 〈B5, ∅, [h0\((extinguished fire1), T1) ← s3; body(workOnFire)θ1; s4; endp], θ1〉,
(rule S4)

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 38

whereB5 = B ∪ {sync(a0, ψ0,workOnFire)sync(a1, ψ0,workOnFire),

sync(a2, ψ0,workOnFire), sync(a3, ψ0,workOnFire)}.
6. The execution ofs3 is to make sure planworkOnFire can be re-entered, whenever needed.

After this, the belief base recovered toB.

c6 = 〈B, ∅, [h0\((extinguished fire1), T1) ← body(workOnFire)θ1; s4; endp], θ1〉,
(rule I1)

body(workOnFire)θ1 =

(choice

((prefcond (fireLevel fire1 low))(Do extinguishM1 fire1))

((prefcond (fireLevel fire1 high))(Priority 5)(Do extinguishM2 fire1))

((prefcond (fireLevel fire1 high))(Priority 2)(Do extinguishM3 fire1))

).

7. Applying rule C1,c6 becomes

c7 = 〈B6, ∅, [h1\(true, T1) ← (DO T1 extinguishM2 fire1); cend], θ1〉, (rule C1)

whereh1 = [h0\((extinguished fire1), T1) ← body(workOnFire)θ1; s4; endp],

B6 = B ∪ {BR = {(Do extinguishM2 fire1)}}.
8. Now, the top intention slice is a plan invocation. We omit the steps similar to steps from

2 to 5, and suppose now the transition becomes

c8 = 〈B6, ∅, [h1\(true, T1) ← body(extinguishM2)θ1; s4; endp; cend], θ1〉, (rule I1)

c8 is equivalent toc′8:

c′8 = 〈B6, ∅, [h1\(true, T1) ← s5; s6; s4; endp; cend], θ1〉,

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 39

where

s5 = (agent-bind (?x ?y) φ1)),

s6 = (if (cond φ2) l1 l2), where

φ1 = (playsRole firefighter ?x) (capableOf heavyTank ?x)

(playsRole firefighter ?y) (capableOf heavyTank ?y) (notEq ?x ?y),

φ2 = (notEq self ?x) (notEq self ?y),

l1 = (Do self (extinguishF ire fire1 300)),

l2 = (co-act?x ?y fire1 500)).

9. The execution of agent-bind adds more bindings.

c9 = 〈B6, ∅, [h1\(true, T1) ← s6; s4; endp; cend], θ2〉, (rule B1)

whereθ2 = {?f/fire1, ?x/a1, ?y/a2}, becausea1 anda2 makeφ1 true.

10. φ2 is false for agenta1, so c9 transforms to

c10 = 〈B6, ∅, [h1\(true, T1) ← (co-act?x ?y fire1 500); s4; endp; cend], θ2〉, (rule S2)

11. Then agenta1 enters plan co-act with bindingη = {?a/?x, ?b/?y, ?f/fire1, ?amount/500}.

c11 = 〈B6, ∅, [h2\(true, T1) ← s7 s8 s9; s11; endp], θ3〉, (rule P1)

where

h2 = [h1\(true, T1) ← (co-act?x ?y fire1 500); s4; endp; cend],

θ3 = {?f/fire1, ?x/a1, ?y/a2, ?amount/500, ?a/?x, ?b/?y},

s7 = (Do self (carryWater 2000)),

s8 = (Do self (moveTo fire1)),

s9 = (while (cond (waterMoreThan 500)(at a1 fire1)(at a2 fire1)) s9),

s10 = (Do (a1 a2) (co-spray500)),

s11 = (Do self (send T1, 〈ctell, self, ψ0, co-act, 1〉));

(wait until (∀a ∈ T1 · ctell(a, ψ0, co-act, 1) ∈ B)).

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 40

12. The execution ofs7 affects the belief base.

c12 = 〈B12, ∅, [h2\(true, T1) ← s8; s9; s11; endp], θ3〉, (rule I1)

whereB12 = B6 ∪ {(hasWater 2000)}.
13. Then agenta1 enters planmoveTowith binding η = {?lo/fire1}:

c13 = 〈B12, ∅, [h3\(true, a1) ← s12; endp], θ4〉, (rule P3)

where

h3 = [h2\(true, T1) ← s8; s9; s11; endp],

θ4 = {?f/fire1, ?x/a1, ?y/a2, ?amount/500, ?a/?x, ?b/?y, ?lo/fire1},

s12 = (while (cond (not (at self fire1))) s11),

s13 = (Do self (stepForwardfire1)).

14. If a1 currently is not at the location offire1, the loop unfolds.

c14 = 〈B12, ∅, [h3\(true, a1) ← s13; s12; endp], θ4〉, (rule S3)

15. Suppose now, there is no route fora1 to get tofire1, i.e., the termination condition of

moveToholds. Then according to rule P5, the transition backtracks to the latest choice point:

c15 = 〈B13, ∅, [h0\((extinguished fire1), T1) ← body(workOnFire)θ1; s4; endp], θ4〉,
(rule P4)

whereB13 = B12 ∪ {(failed moveTo fire1)}.
16. Now, the agents can choose another branch, if possible, to achieve the goal(extinguished fire1).

VII. CAST–AN AGENT ARCHITECTURE REALIZINGMALLET

CAST (Collaborative Agents for Simulating Teamwork) is a team-oriented agent architecture

that supports teamwork using a shared mental model (SMM) among teammates [8]. The CAST

kernel includes an implemented interpreter of MALLET. At compile time, CAST translates

processes specified in MALLET into PrT nets (specialized Petri-Nets), which use predicate

evaluation at decision points. CAST supports predicate evaluation using a knowledge base with

a Java-based backward chaining reasoning engine called JARE. The main distinguishing feature

of CAST is proactive team behaviors enabled by the fact that agents within a CAST architecture

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 41

Process

Tracking
 Proactive Behaviors

CAST

Reasoning Engine

Goal

Management

Teamwork

knowledge

in

MALLET

Domain

knowledge

MALLET

Parser

Individual Mental Model

Team Processes in PrT Nets

Shared Domain Knowledge

Information needs Graphs

SMM

Fig. 1. The relationship between MALLET and CAST

share the same declarative specification of team structure and process as well as share explicit

declaration of what each agent can observe. Therefore, every agent can reason about what other

teammates are working on, what the preconditions of teammates’ actions are, whether a teammate

can observe the information required to evaluate a precondition, and hence what information

might be potentially useful to the teammate. As such, agents can figure out what information

to proactively deliver to teammates, and use a decision theoretic cost/benefit analysis for doing

proactive information delivery. CAST has been used in several domains including fire-fighting,

simulated battle fields [24]. Examples and practices of using MALLET can be found in [31].

Figure 1 shows the CAST architecture. A CAST agent has six components: Reasoning Engine

(RE), Shared Mental Model (SMM), Individual Mental Model (IMM), Team Process Tracking

(TPT), Proactive Behavior (PB), and Goal Management (GM). Based on the current states of

SMM and IMM, the RE triggers appropriate algorithms in TPT, PB and GM to monitor the

progress of team activities, to select goals to pursue, to anticipate others information needs

and to proactively help them. The execution of these mental operations will further affect the

evolution of the shared and individual mental states.

CAST supports three kinds of information-needs, which are critical for initiating help behav-

iors. First, CAST is implemented such that each team member commits to letting others know

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 42

its progress in the current team process. Such communication for synchronization purpose is

motivated by the built-in information-needs: each agent needs to know others progress in order to

maintain the SMM regarding the dynamic status of team process. The built-in information-needs

provide the cohesive force [2] that binds individual CAST agents together as a team. The second

kind of information-needs is those explicitly coded in a team process. CAST agents can establish

partial information-flow relationships by extracting the pre-conditions, termination conditions

and constraints associated with (sub-)plans in a team process. These partial relationships can be

further refined at run time as the team allocates tasks. The third kind of information-needs is

those explicitly requested from teammates.

While IMM stores those mental attitudes privately held by individual agents, SMM stores the

knowledge and information that are shared by all team members. It has four components: team

process, team structure, domain knowledge, and Information-needs Graphs. The team process

component can be further split into static part and dynamic part. The static part is a collection of

plans represented as PrT nets, which describe how the team is to accomplish its goals. These plans

are like incomplete recipes in the SharedPlans theory, since the actors of unresolved tasks need to

be determined at run time. The dynamic part is a collection of token configurations, each of which

tracks the current progress of the corresponding plan. The team structure component of SMM

captures those knowledge specifying roles in the team, agents in the team, and the roles each

agent can play. A shared understanding about team structure enables an agent to develop a higher

level abstraction about capabilities, expertise, and responsibilities of generic team members.

The domain knowledge component describes domain-dependent common knowledge shared by

all the team members, such as each agents observability (used to approximate nested beliefs),

communication protocols, inference rules, domain expertise, etc. The Information-needs Graphs

are used to maintain the dynamic information-needs relationships (i.e., make sure the information

needs reflect the current status of team activities).

The TPT module is used by individual agents to interpret and manipulate a team process so

that they could collaborate smoothly both when everything is progressing as planned and when

something goes wrong unexpectedly. The PB module encapsulates all the proactive teamwork

capabilities. One of such implemented capabilities is proactive information delivery, which

depends on the anticipation of others information needs. The capability is implemented in the

DIARG (Dynamic Inter-Agent Rule Generator) algorithm. Upon acquiring new information from

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 43

Fig. 2. The CAST Monitor

the environment, DIARG checks whether the new information matches some teammates future

information-needs. If there is a match, the agent will consider sending out the new information

to the corresponding needers proactively.

An agent may have multiple goals. Some are individual goals and others are team goals; some

may have temporal relations while others may not. The GM module is used by a CAST agent

to select a goal to pursue, or suspend the pursuit of one goal and switch to another; both are

based on the agents situation assessment and cooperation requests from other agents. Once a

goal is committed, GM will find a plan that can achieve the goal; the PrT net generated for the

plan will become the agents work process.

Figure 2 is a screen shot of CAST monitor. CAST monitor can display the PrT nets (visual

representation of MALLET plans) that a team of agents are working on. Different colors are

used to indicate the progress of activities, so that a human can track the running status of a team

process.

It is worth noting that MALLET is designed to be a language for encoding teamwork knowl-

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 44

edge, and CAST is just one agent architecture that realizes MALLET. It is not required that all

agents in a team have to be homogeneous in that they are all implemented in the same way.

Agents with different architectures can form a team and work together with CAST agents as long

as their kernels conform to the semantics of MALLET and the same communication protocols.

VIII. C OMPARISON

We compare MALLET with the work in JACK [17], OWL-S [32], PDDL [33], and the team-

oriented programming framework [9].

Instead of providing a higher-level plan-encoding language like MALLET, JACK Teams

[17] tried to extend a traditional programming language (i.e. Java) with special statements for

programming team activities. In JACK Teams, a team is an individual reasoning entity that is

characterized by the roles it performs and the roles it requires others to perform. To form a team

is to set up the declared role obligation structure by identifying particular sub-teams capable of

performing the roles to be filled.

JACK Teams has constructs particularly for specifying team-oriented behaviors.Teamdata is

a concept that allows propagation of beliefs from teams to sub-teams and vice versa. In a sense,

belief propagation in JACK is comparable to the maintenance of SMM in CAST. However, SMM

in CAST is a much more general concept, which includes team plans, progress of team activities,

results of task allocations, decision results of choice points, information needs graphs, etc. Agents

in a team need to proactively exchange information (beliefs) to maintain the consistency of their

SMM. Statements @team achieve and @parallel are used in JACK for team goal handling.

@team achieve is similar toDO statement in MALLET, except that @team achieve is realized

by sending an event to the involved sub-team, while the agents involved in aDO statement will

try to perform the associated activity whenever they reach the statement along the team process.

@parallel allows several branches of activity in a teamplan to progress in parallel. A @parallel

statement can specify success condition, termination condition, how termination is notified, and

whether to monitor and control the parallel execution. In semantics, @parallel statement can

be simulated usingPAR or CHOICE in MALLET. As far as failure handling is concerned,

JACK Teams leverages the Java exception mechanism to throw and catch exceptions of types

TeamException , TeamError , andTeamAbort , while in CASTCHOICE points are used

as places to catch failures and re-attempt the failed goals if needed, which is much more flexible

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 45

in recovery from failure at the team plan level.

OWL-S [32] is an ontology language for describing properties and capabilities of Web services.

It enables users and software agents to automatically discover, invoke, compose, and monitor Web

services. Similar to MALLET, OWL-S provides constructs (such as Sequence, Split, Split+Join,

Choice, Unordered, If-Then-Else, Iterate, etc.) for specifying composite processes, and precondi-

tions and effects can be associated with a process. There exist correspondences between OWL-S

and MALLET. For instance, both ‘Split’ in OWL-S andPAR in MALLET can be used to specify

components to be executed concurrently. The main difference between these two language lies

in the fact that MALLET is designed for encoding team intelligence where the actors of each

activity within a team process need to collaborate with each other in pursuing their joint goals,

while OML-S, as an abstract framework for describing service workflows, does not consider

collaboration issues from the perspective of agent teamwork.

PDDL (the Planning Domain Definition Language) [33] is a standard language for the encoding

of planning domains, inspired by the well-known STRIPS formulations of planning problems.

PDDL is capable of capturing a wide variety of complex behaviors using constructs such asseq,

parallel, choice, foreach andforsome. The semantics of processes in PDDL is grounded on a

branching time structure. One key difference between PDDL and MALLET is that PDDL is used

for guiding planning while MALLET is used for encoding the planning results. The processes

defined in PDDL serve as guides for a planner to compose actions to achieve certain goals,

while the processes in MALLET serve as common recipes for a team of agents to collaborate

their behaviors.

The detailed comparison between MALLET and TOP is shown in Table I.

IX. CONCLUSION

MALLET is a language that organizes plans hierarchically in terms of different process con-

structs such as sequential, parallel, selective, iterative, or conditional. It can be used to represent

teamwork knowledge in a way that is independent of the context in which the knowledge is

used. This paper described the design objective of MALLET, defined an operational semantics

for MALLET in terms of a transition system, used the transition rules to formally reason about

the behaviors of an example agent team, and briefly introduced CAST–an implemented interpreter

of MALLET, which uses PrT nets as the internal representation of team process.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 46

TABLE I

A COMPARISON BETWEENMALLET AND TOP

Items TOP MALLET

Expressivity a language for specifying joint plans at team level a language for programming team activity

Expressions: Control constructs:

testing plan expression (only the specified agents can do)IF construct (all agents reaching it can do)

sequencing operator ‘;’ SEQ

parallelism operator ‘&’ PAR

alternative operator ‘|’ CHOICE

iterative N/A WHILE, FOREACH, FORALL

joint activity N/A JOINT-DO (AND, OR, XOR)

Plans pre-defined pre-defined and shared

Team structure formed on demand based on pre-computed skill pre-specified and shared, allow

information, no run-time re-formation run-time re-formation (AGENT-BIND)

Plan body composed of sub-goals, each raises a decision task oncomposed of sub-processes, which frees

how to achieve that goal (dynamic plan selection) agents from run-time plan selections.

task assignment the acting team may outnumber the the acting team are selected such that

formal team, such a case will incur information is exchanged only among the

unnecessary communication cost relevant teammates

fail handling OR node CHOICE, termination conditions,

pre-conditions

MALLET does have several limitations, though. For instance, there is no clear semantics

defined for dynamic joining or leaving a team. Also, MALLET does not specify what to do

if agents do not have a plan to reach a goal. Although some of these issues can be left open

to agent system designers, providing a language-level solution might be helpful in guiding the

implementation of team-based agent systems. One way is to extend MALLET with certain build-

in meta-plans. For instance, meta-plans, say,resource-based-planner, can be added so that agents

could execute it to construct a plan when they need but do not have one.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 47

APPENDIX I

THE SYNTAX OF MALLET

CompilationUnit ::= (AgentDef| TeamDef| MemberOf| GoalDef | Start |
CapabilityDef| RoleDef | PlaysRole| FulfilledBy | IOperDef |
TOperDef| PlanDef| RuleDecl)*

AgentDef ::= ’(’ 〈AGENT〉 AgentName ’)’

TeamDef ::= ’(’ 〈TEAM〉 TeamName (’(’ (AgentName)+ ’)’)? ’)’

MemberOf ::= ’(’ 〈MEMBEROF〉 AgentName

(TeamName| ’(’ (TeamName)+ ’)’) ’)’

GoalDef ::= ’(’ 〈GOAL〉 AgentOrTeamName (Cond)+ ’)’

Start ::= ’(’ 〈START〉 AgentOrTeamName Invocation ’)’

CapabilityDef ::= ’(’ 〈CAPABILITY 〉 (AgentName| ’(’ (AgentName)+’)’)

(Invocation| ’(’ (Invocation)+ ’)’) ’)’

RoleDef ::= ’(’ 〈ROLE〉 RoleName (Invocation| ’(’(Invocation)+’)’)’)’

PlaysRole ::= ’(’〈PLAYSROLE〉 AgentName ’(’ (RoleName)+ ’)’ ’)’

FulfilledBy ::= ’(’ 〈FULFILLEDBY〉 RoleName ’(’ (AgentName)+ ’)’ ’)’

IOperDef ::= ’(’ 〈IOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? ’)’

TOperDef ::= ’(’ 〈TOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? (NumSpec)? ’)’

PlanDef ::= ’(’ 〈PLAN〉 PlanName ’(’ (〈Variable〉)* ’)’

(PreConditionList| EffectsList | TermConditionList)*

’(’ 〈PROCESS〉 MalletProcess ’)’ ’)’

RuleDecl ::= ’(’ 〈RULE〉 (Pred)+ ’)’

Cond ::= Pred| ’(’ 〈NOT〉 Cond ’)’

Pred ::= ’(’ 〈IDENTIFIER〉 (〈IDENTIFIER〉 | 〈VARIABLE 〉)* ’)’

Invocation ::= ’(’PlanOrOperName (〈IDENTIFIER〉 | 〈VARIABLE 〉)* ’)’

PreConditionList ::= ’(’〈PRECOND〉 (Cond)+ (’:IF-FALSE’ (〈SKIP〉 | 〈FAIL〉 |
〈WAIT-SKIP〉 ((〈DIGIT〉)+)? | 〈WAIT-FAIL 〉 ((〈DIGIT〉)+)? |
〈ACHIEVE-SKIP〉 | 〈ACHIEVE-FAIL〉))? ’)’

EffectsList ::= ’(’ 〈EFFECTS〉 (Cond)+ ’)’

TermConditionList ::= ’(’〈TERMCOND〉 (〈SUCCESS-SKIP> | 〈SUCCESS-FAIL> |
〈FAILURE-SKIP〉| 〈FAILURE-FAIL〉)? (Cond)+’)’

NumSpec ::= ’(’〈NUM〉 (′ =′ |′ <′ |′ >′ |′ ≤′ |′ ≥′) (〈DIGIT 〉)+ ’)’

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 48

PrefCondList ::= ’(’ 〈PREFCOND〉 (Cond)+ (’:IF-FALSE’ (〈SKIP〉 | 〈FAIL〉 |
〈WAIT-SKIP〉 ((〈DIGIT〉)+)? | 〈WAIT-FAIL 〉 ((〈DIGIT〉)+)? |
〈ACHIEVE-SKIP〉 | 〈ACHIEVE-FAIL〉))? ’)’

Priority ::= ’(’ 〈PRIORITY〉 (〈DIGIT〉)+ ’) ’

ByWhom ::= AgentOrTeamName| 〈VARIABLE 〉 | MixedList

MixedList ::= ’(’ (〈IDENTIFIER〉 | 〈VARIABLE 〉)+ ’)’

Branch ::= ’(’(PrefCondList)?(Priority)? ’(’〈DO〉ByWhom Invocation’)”)’

MalletProcess ::= Invocation| ’(’ 〈DO〉 ByWhom MalletProcess ’)’

| ’(’ 〈AGENTBIND〉 VariableList ’(’ 〈CONSTRAINTS〉 (Cond)+ ’)’ ’)’

| ’(’ 〈JOINTDO〉 (〈AND〉 | 〈OR〉 | 〈XOR〉)?

(’(’ ByWhom MalletProcess ’)’)+ ’)’

| ’(’ 〈SEQ〉 (MalletProcess)+ ’)’| ’(’ 〈PAR〉 (MalletProcess)+ ’)’

| ’(’ 〈IF〉’(’ 〈COND〉(Cond)+’)’MalletProcess(MalletProcess)?’)’

| ’(’ 〈WHILE〉 ’(’ 〈COND〉 (Cond)+ ’)’ MalletProcess ’)’

| ’(’ 〈FOREACH〉 ’(’ 〈COND〉 (Cond)+’)’MalletProcess’)’

| ’(’ 〈FORALL〉 ’(’ 〈COND〉 (Cond)+ ‘)’MalletProcess’)’

| ’(’ 〈CHOICE〉 (Branch)+ ’)’

APPENDIX II

A MALLET P ROFILE FOR AFIRE-FIGHTING EXAMPLE

(team T1 (a1, a2, a3, a4))

(goal T1 (extinguished fire1))

(playsRolefirefightera0)

(playsRolefirefightera1)

(playsRolefirefightera2)

(playsRoleambulancea3)

(capableOf heaveyTanka1)

(capableOf heaveyTanka2)

(ioper carryWater (?amount)

(effects (hasWater ?amount)))

(ioper stepForward (?f)

(pre-cond (closer ?w ?f) (canMove self ?w))

(effects (at self ?w)))

(ioper spray (?amount)

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 49

(pre-cond (hasWater ?w) (<= ?amount ?w) (- ?w ?amount ?left))

(effects (hasWater ?left)))

(toper co-spray (?amount)

(pre-cond (hasWater ?w) (<= ?amount ?w) (- ?w ?amount ?left))

(effects (hasWater ?left))

(num eq 2))

(plan workOnFire (?f)

(effects (extinguished ?f))

(process

(choice

((prefcond (fireLevel ?f low)) (Do extinguishM1 ?f))

((prefcond (fireLevel ?f high)) (Priority 5) (Do extinguishM2 ?f))

((prefcond (fireLevel ?f high)) (Priority 2) (Do extinguishM3 ?f))

)))

(plan extinguishFire (?f ?amount)

(process

(seq

(Do self (carryWatter ?amount))

(Do self (moveTo ?f))

(Do self (spray ?amount))

)))

(plan extinguishM1 (?f)

(pre-cond (hasResource water))

(process

(Do self (extinguishFire ?f 300))))

(plan extinguishM2 (?f)

(pre-cond (hasResource water))

(process

(agent-bind (?x ?y)

(constraints (playsRole firefighter ?x) (capableOf heavyTank ?x)

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 50

(playsRole firefighter ?y) (capableOf heavyTank ?y)

(notEq ?x ?y)))

(if (cond (notEq self ?x) (notEq self ?y))

(Do self (extinguishFire ?f 300))

(co-act ?x ?y ?f 500)))

(plan moveTo (?lo)

(term-cond SUCCESS-FAIL (noRouteTo ?lo))

(process

(while (cond (not (at self ?lo)))

(Do self (stepForward ?lo)))))

(plan co-act (?a ?b ?f ?amount)

(process

(seq

(Do self (carryWatter 2000))

(Do self (moveTo ?f))

(while (cond (waterMoreThan ?amount) (at ?a ?f)(at ?b ?f))

(Do (?a ?b) (co-spray ?amount))))))

ACKNOWLEDGMENT

This research has been supported by AFOSR MURI grant No. F49620-00-1-0326.

REFERENCES

[1] P. R. Cohen and H. J. Levesque, “Teamwork,”Nous, vol. 25, no. 4, pp. 487–512, 1991.

[2] P. R. Cohen, H. J. Levesque, and I. A. Smith, “On team formation,” inContemporary Action Theory, J. Hintikka and

R. Tuomela, Eds., 1997.

[3] N. R. Jennings, “Controlling cooperative problem solving in industrial multi-agent systems using joint intentions,”Artificial

Intelligence, vol. 75, no. 2, pp. 195–240, 1995.

[4] B. Grosz and S. Kraus, “Collaborative plans for complex group actions,”Artificial Intelligence, vol. 86, pp. 269–358, 1996.

[5] M. Tambe, “Towards flexible teamwork,”Journal of AI Research, vol. 7, pp. 83–124, 1997.

[6] C. Rich and C. Sidner, “Collagen: When agents collaborate with people,” inProceedings of the International Conference

on Autonomous Agents (Agents’97), 1997.

[7] J. Giampapa and K. Sycara, “Team-oriented agent coordination in the RETSINA multi-agent system,” Robotics Institute,

Carnegie Mellon University, Tech. Rep. CMU-RI-TR-02-34, 2002.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 51

[8] J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu, and R. Volz, “CAST: Collaborative agents for simulating teamworks,” in

Proceedings of IJCAI’2001, 2001, pp. 1135–1142.

[9] G. Tidhar, “Team oriented programming: Preliminary report,” inTechnical Report 41, AAII, Australia, 1993.

[10] D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon, “Toward team-oriented programming,” inAgent Theories,

Architectures, and Languages, 1999, pp. 233–247.

[11] P. Scerri, D. V. Pynadath, N. Schurr, and A. Farinelli, “Team oriented programming and proxy agents: the next generation,”

in Proc. of the 1st Inter. Workshop on Prog. MAS at AAMAS’03, 2003.

[12] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg, “Social plans: A preliminary report,” inDecentralized AI 3 –Proceedings

of MAAMAW-91), E. Werner and Y. Demazeau, Eds. Elsevier Science B.V.: Amsterdam, Netherland, 1992, pp. 57–76.

[13] D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar, and E. Werner, “Planned team activity,” inArtificial Social

Systems (LNAI-830), C. Castelfranchi and E. Werner, Eds. Springer-Verlag: Heidelberg, Germany, 1992, pp. 226–256.

[14] G. Tidhar, A. Rao, and E. Sonenberg, “Guided team selection,” inProceedings of the 2nd International Conference on

Multi-agent Systems (ICMAS-96), 1996.

[15] J. Laird, A. Newell, and P. Rosenbloom, “SOAR: an architecture for general intelligence,”AI, vol. 33, no. 1, pp. 1–64,

1987.

[16] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, “Distributed intelligent agents,”IEEE Expert, Intelligent

Systems and their Applications, vol. 11, no. 6, pp. 36–45, 1996.

[17] “JACK Teams manual,” inhttp://www.agent-software.com/shared/demosNdocs/ JACK-Teams-Manual.pdf, 2003.

[18] P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, M. Si, N. Schurr, and M. Tambe, “A prototype infrastructure for

distributed robot, agent, person teams,” inProceedings of the second International Joint conference on agents and multiagent

systems, 2003.

[19] E. Davis, “Knowledge preconditions for plans,”Journal of Logic and Computation, vol. 4, no. 5, pp. 721–766, 1994.

[20] N. Jennings, P. Faratin, M. Johnson, T. Norman, P. O’Brien, and M. Wiegand, “Agent-based business process management,”

International Journal of Cooperative Information Systems, vol. 5, no. 2&3, pp. 105–130, 1996.

[21] R. Tuomela and K. Miller, “We-intentions,”Philos. Stud, vol. 53, no. 2&3, pp. 367–389, 1988.

[22] J. Yen, X. Fan, and V. R. A., “Towards a theory for proactive information exchange in agent teamwork,”Artificial

Intelligence, vol. (accepted), 2004.

[23] J. R. Anderson and C. ALebiere,The Atomic Components of Thought. Hillsdale, NJ: Lawrence Erlbaum Associates,

1998.

[24] J. Yen, X. Fan, S. Sun, T. Hanratty, and J. Dumer, “Agents with shared mental models for enhancing team decision-

makings,”Decision Support Systems, Special issue on Intelligence and Security Informatics(in press), 2005.

[25] M. Prasad, V. Lesser, and S. E. Lander, “Retrieval and reasoning in distributed case bases,”Journal of Visual Communication

and Image Representation, Special Issue on Digital Libraries, vol. 7, no. 1, pp. 74–87, 1996.

[26] R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge, “Model checking agentspeak,” inProceedings of AAMAS-2003,

2003, pp. 409–416.

[27] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons, “Model checking multiagent systems with MABLE,” inProceedings

of AAMAS-2002, 2002.

[28] M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer, “A programming language for cognitive agents: Goal directed

3APL,” in Proc. of the 1st Inter. Workshop on Prog. MAS at AAMAS’03, 2003.

[29] A. Rao, “AgentSpeak(L): BDI agents speak out in a logical computable language,” inMAAMAW’96, LNAI 1038. Springer-

Verlag: Heidelberg, Germany, 1996, pp. 42–55.

February 17, 2005 DRAFT

SUBMITTED TO IEEE TRANS. ON KNOWLEDGE AND DATA ENGINEERING 52

[30] G. D. Giacomo, Y. Lesperance, and H. J. Levesque, “ConGolog, a concurrent programming language based on the situation

calculus,”AI, vol. 121, no. 1-2, pp. 109–169, 2000.

[31] J. Yen and et al, “CAST manual,” IST, The Pennsylvania State University, Tech. Rep., May 2004. [Online]. Available:

http://faculty.ist.psu.edu/yen/Center/

[32] OWL-S, in http://www.daml.org/services/owl-s/1.0/owl-s.html, 2003.

[33] D. McDermott, “The formal semantics of processes in PDDL,” inProc. ICAPS Workshop on PDDL, 2003.

February 17, 2005 DRAFT

