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Abstract 
 

The Trading Agent Competition has provided a 
challenging game environment, where competing 
agents engage in complex decision-making activities in 
a simulated supply chain domain. We analyze our 
agent, PSUTAC, together with five other top 
performing teams on their general strategies for 
making interrelated procurement, sales, production, 
and delivery decisions.  Heuristic methods are found to 
form the core of the agent strategies. However, 
organizing, maintaining, and applying these heuristics 
in such a complex and uncertain domain is a nontrivial 
task. We propose a knowledge-based approach to 
organize these heuristics. Compared with the 
architecture that PSUTAC used before, the new design 
has shown many improvements including ease of 
coding, testing, and transparency. 

 
1. Introduction 

 
Network-enabled supply chains allow companies to 

outsource business processes more easily, affording 
quicker time-to-market, cost savings, and lowering 
risks.  Multi-agent system design meshes well with 
modeling supply chain networks, as it inherently 
assumes that agents have their own goals, which may 
be anywhere from pure self-interest to cooperative, 
thus permitting more freedom of analysis compared to 
traditional simulation or analytic tools. 

The 2003 Trading Agent Competition added a 
Supply Chain Management game (TAC/SCM) [1] to 
simulate research in this area.  We compare the 
strategies used by our agent, PSUTAC, to five other 
top performing agents in this game.  Drawing from this 
analysis, and from lessons learned during our 
experiences in this game, we propose a new 
knowledge-based architecture for PSUTAC. 

Given that analytic tools are limited in their ability 
to model complex, multi-firm, multi-dimensional 

environments, the ability to interact with agents at the 
knowledge level[2] allows human managers to create 
and test strategies in a meaningful way.  It also 
provides the groundwork for more semantically 
meaningful interactions among supply chain agents in 
the future. 
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Figure 1. A break down analysis of the 
TAC/SCM problem. 

Figure 1 shows the result of a causal relation 
analysis for the TAC/SCM game.    On the left side, a 
performance criteria such as bank balance, is 
decomposed into income and expenses.  Income and 
expenses encompass a composite of performance 
indicators such as finance charges and sales revenue.  
Performance indicators can be computed directly from 
various decision variables (i.e, sales revenue = sales 
quantity * sales price).  On the right side, decisions 
about purchasing, production, sales, and delivery, draw 
on current values of decision variables, and also affect 
their future values.  Making decisions in such a 
dynamic, interrelated, environment is what makes 
organizing and managing this knowledge non-trivial.   



2. Current PSUTAC 
 
The PSUTAC agent uses a “Make-to-Plan” 

approach to maximize its responsiveness to customers’ 
demand. The approach involves  (1) deciding on a 
required level of production, (2) purchasing all 
components at the beginning of the game, 
(3) producing with full capacity, and (4) selling on-
hand stock at optimum prices.  The aggressive buying 
strategy and relative conservative selling strategy 
helped the agent avoid problems created by supply 
uncertainties.  However, the strategy could not handle 
changes in customer’s demand because the component 
purchase decisions had to be made without any 
information about consumer demand. 

Each day, the PSUTAC makes the following 
decisions: a) price setting b) what consumer’s Request-
For-Quotes (RFQ) to bid on and c) production 
scheduling.  First, the agent uses a Gaussian function 
to set bidding prices randomly. The mean is based on 
the market price. The variance of the distribution is 
determined by two weighted decision factors: the 
current stock level and the overall demand.  After 
setting the prices, the agent selects the bids that have a 
reserved price higher than the bidding price and the 
agent offers no more than what is on hand.  In 
addition, the agent delivers an order immediately after 
it receives one from the customer.  Therefore, by 
bidding and delivering conservatively, the agent 
achieves a high fill rate and a low penalty rate.  Last, 
the agent schedules its productions, prioritizing 
products according to the inverse of the various 
products’ stock level. 

 
2.1. MRP strategies 

 
Our competitive strategy has changed from 

focusing on high efficiency to focusing on high 
responsiveness. A high efficiency strategy prioritizes 
the agent’s goal towards cost saving, while a high 
responsiveness strategy emphasizes a high fill rate for 
the customer’ orders.  Originally, our material 
requirement planning (MRP) strategy was 
Make-to-Order (i.e. plan components and productions 
requirements according to sales orders). However, we 
found the strategy led to low order fill rates due to long 
purchase lead-times and uncertain supplies. The 
strategy was used in the TAC’03 qualifying round. The 
average score was -120.0M, which was the lowest 
among the twenty competing teams. 

Then we changed to a more conservative planning 
model: Make-to-Plan, which stocks a high volume of 
components and products to ensure a high level of 

availability. The new strategy was used in seeding 
round. The average score was 15.25M, which placed 
PSUTAC in sixth place. 
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Figure 2. MRP strategies. 

Figure 2 illustrates the different MRP strategies and 
their impact on efficiency and responsiveness. High 
responsiveness and high efficiency cannot be achieved 
at the same time [3], thus agent designers need to 
consider such tradeoffs in their strategy choices. 

 
3. A comparison of TAC agents 

 
This section provides a brief description of agent 

strategies of TAC’03 finalists1 and PSUTAC. The 
strategies (summarized in Table 1) include purchase 
RFQ, purchase order, production schedule, sales offer, 
pricing, and delivery. RedAgent, the winner of 
TAC’03/SCM, uses a market based mechanism based 
on internally simulated market for allocation of various 
agent resources and also for determining bid prices [4]. 
DeepMaize uses an equilibrium analysis to define an 
expected profitable zone of operation and then 
employs a feedback control mechanism to suppress 
deviations from this zone of operation [5]. TacTex 
uses heuristics that are based on predictions of future 
circumstances to determine offer prices, production 
schedules and other decision variables. These future 
predictions are made assuming the current relationship 
between decision variables in consideration will 
remain the same in the future game [6]. PackaTac uses 
a heuristic-based conservative strategy aimed at 
avoiding losses in low demand games [7].  Boticelli 
uses a stochastic programming approach to solve the 
production scheduling and bidding problems 
optimally [8].  

It is important to note that most of the successful 
agents relied on simple heuristics in their decision 
making process.  For example, our review of the 

                                                           
1 WhiteBear was not included because published 
reports on it are unavailable. 



agents’ strategies reveals that most of the agents relied 
on large-scale procurement of components on the first 
day of the game. However, the preemptive strategy [5] 
employed by DeepMaize in the later stages of the 

tournament negatively affected the performance of the 
agents (including ours) who had no contingency 
strategies. This failure forces us to review the method 
that we used for the agent design. 

Table 1. A comparison of the agents’ decision strategies. 

Teams Purchase RFQ Purchase order Production Sales offer Pricing Delivery 

RedAgent [4] Send large 
quantities on day 
one; buy to maintain 
safety stock. 

Order offers in 
order of 
increasing price 
and accept offers 
with purchase 
lead time small 
enough so that 
future safety 
stock holds. 

Assembler 
agents buy and 
sell production 
cycles in sealed 
double bid 
auctions. 

Offer no more 
than current 
product 
inventory. 

Based on closing 
prices in the 
internal PC 
market used by 
the agent.  

An internal order 
agent arranges 
deliveries which 
are based on base 
price, profit, and 
penalty. 

Deep Maize [5] Use preemption 
strategy to block 
vendors’ available 
capacities on the 
first day. Send 
RFQs to reduce the 
difference between 
current stock and 
reference inventory 
trajectory that is 
based on customer 
orders, expected 
component 
utilization, and 
required buffer. 

Use hill climbing 
search algorithm 
optimizing the 
difference 
between 
expected value 
of projected 
inventory and 
cost of 
components. 

Optimize over 
three-day period 
using linear 
programming. 

Offer based on 
current product 
and component 
inventory and 
available free 
cycles. 

Model the 
customer’s RFQs 
as first price 
sealed bids with 
independent 
private values to 
find optimum 
bidding prices. 

Not specified in 
the paper. 

TacTex [6] Send large 
quantities on day 
one; send RFQs to 
obtain safety stock. 

Accept second 
day offers on the 
basis of the 
projected 
customer’s 
demand and 
components’ 
delivery 
schedule. 

Greedy 
algorithm that 
sorts orders in 
order of 
decreasing value 
and schedules 
factory to fulfill 
them. 

Offers based on 
probability 
calculations of 
obtaining an 
order based on 
historic game 
data. 

Optimize the 
function (price-
cost)*probability 
of winning the 
order. 

Deliver orders in 
order of 
decreasing value. 

Botticelli [8] Send large 
quantities on day 
one. 

Accept all offers. A greedy 
approach that 
sorts orders 
based on due 
date and 
penalties and 
offers on 
expected 
profitability. 

Model as a 
stochastic 
process with 
prices associated 
with winning 
probabilities and 
maximize over 
production 
schedule. 

Model as a 
stochastic 
process with 
prices associated 
with winning 
probabilities and 
maximize over 
production 
schedule. 

Deliver in order 
of ascending due 
date, then by 
descending 
penalty. 

PackaTac [7] 

 

Send small quantity 
of first day RFQs 
and later day RFQs 
to maintain safety 
stock. 

Accept first day 
offers based on 
the customer’s 
demand and due 
dates of 
component 
delivery. 

Greedy 
algorithm based 
production on 
earliest due-date 
first heuristic. 

 

Offer no more 
than current 
stock + amount 
that can be 
produced using 
current 
inventory. 

Use heuristics 
based on 
component cost 
and reserve 
price. 

Deliver orders in 
order of due date 
and in decrease 
order of profit. 

PSUTAC Send large 
quantities on day 
one. 

Accept all offers. Greedy 
algorithm that 
sorts products 
based on 
availability in 
inventory. 

Offer no more 
than current 
product 
inventory. 

Gaussian 
function based 
on market price, 
current inventory 
and number of 
RFQs. 

Deliver 
immediately 
after an order is 
received. 



 
3.1. Lessons learned: drawbacks of heuristics 

 
In the current PSUTAC agent, the domain 

knowledge that is required by the agent is embedded as 
heuristics in various functional modules. This 
disorganized knowledge environment presented the 
designers with several obstacles to agent coding, 
knowledge review, and performance evaluation. 

First, knowledge encoding becomes increasingly 
difficult when the number of heuristics increases. 
Although it is easy to embed a few heuristics inside 
functions, when the number of heuristics increases in 
magnitude, as is the case in a complex environment 
like TAC, knowledge management becomes a 
cumbersome task, since it is spread throughout an 
agent’s decision points. Modifying a heuristic often 
involves updating code at many different places. 

Second, knowledge becomes invisible for the 
designers when the number of heuristics increases. 
Designing a complete knowledge base that can 
respond efficiently to all situations or problems is not 
feasible in a complex problem domain like TAC. The 
knowledge base design is usually an iterative process 
with continuous inputs from human designers who 
determine the knowledge updates through the 
evaluation of the agent’s performance. However, 
procedural coding of knowledge obscures the 
incomplete agent design, making it difficult to identify 
its shortcomings or incompleteness.  

Finally, performance evaluation becomes 
increasingly difficult.  When knowledge is distributed, 
particularly in an ad-hoc manner, it can be difficult to 
track the effects of individual pieces of knowledge on 
agent performance. Thus, isolating the effects of an 
individual heuristic and assessing its impact on agent 
performance is not straightforward.  

These drawbacks proved to be critical to our agent’s 
performance as the game became competitive.  In 
particular, our failure to respond to the preemption 
strategy employed by Deep Maize in the semi final 
rounds proved fatal.  While the agent designers were 
aware of deleterious situations, the complicated nature 
of heuristic information prevented adding knowledge 
necessary to respond effectively.  These issues have 
motivated us to adopt a rule-based knowledge base 
using Jess (the Java Expert System Shell) for the 
TAC04. 

 
4. The new PSUTAC 

 
The new approach of the PSUTAC for TAC’04 

employs an expert system for decision making. The 

approach is based on the premise that being able to 
express market strategies and knowledge in 
human-understandable form allows humans to both 
have more confidence in the agent’s behavior, and also 
to contribute to the decision making based on 
experiences learned from market scenarios like the one 
presented in SCM. The expert system will be 
implemented in Jess, where the human’s knowledge 
about the game domain will be captured in the form of 
rules [9].  

 
4.1. Knowledge representation 

 
Although representing knowledge as part of 

heuristic code or as rules seems to be equivalent, the 
two methods have fundamental differences in their 
purposes. A piece of heuristic is a rule of thumb, 
simplification, or educated guess that reduces or limits 
the search for solutions in domains that are difficult 
and poorly understood [10]. Heuristics are mainly used 
to simplify an algorithm. In contrast, knowledge is 
used for making decisions or for proposing solutions. 
Knowledge can be classified into two categories: 
(a) declarative knowledge that describes facts and 
relationships and (b) procedure knowledge that 
describes how to take actions.  

The agent uses declarative knowledge to assess 
situations. For example, the rule in Table 2 indicates 
that current demand is high IF the agent knows the 
current number of RFQ (from the customer) and the 
number is larger than 180. 

Table 2. A rule for assessing the customer’s 
demand 

((demand high)  
(number_of_RFQ ?rfq)  
(> ?rfq 180));  
 

The agent uses procedural knowledge to select 
actions.  In Jess, a procedural rule has two parts 
separated by the "=>" symbol. The first part consists of 
the Left Hand Side (LHS) patterns; the second part 
consists of the Right Hand Side (RHS) actions. The 
patterns are used to match the current situation 
(represented as facts) in the knowledge base, while the 
RHS contains function calls. For example, the agent 
uses the following rule in Table 3 to select the price 
setting functionalities (RHS actions) on the basis of the 
customer’s demand and the present inventory level: IF 
the current demand is high, and the inventory is low, 
THEN set high prices (for the products). 



Table 3. A rule for setting selling prices. 
(demand high) 

  (inventory low) 
  =>  

Price (high) 
 
4.2. Knowledge acquisition 

 
Knowledge acquisition, or the process of acquiring 

domain knowledge, has two different sources: human 
designers and the agent’s own perceptive functions.  In 
a complex environment like TAC where the range of 
situations that an agent may encounter is very large, it 
is essential for the agent designers to add or update the 
agent’s knowledge directly.  The TAC game 
stipulation that an agent cannot be changed in the 
middle of the game forces knowledge acquisition from 
human input to be completely offline.  

Human designers get useful knowledge by 
analyzing historical data, which is recorded in a 
database. For example, the average selling price of a 
product in a low demand game can be set as the base 
price of that product in the games with similar 
situations. Human designers may also update the 
agent’s knowledge by evaluating the agent’s 
performance. However, what particular expertise will 
be useful and how to obtain knowledge through 
learning need our further investigation.  In addition, 
the agent can update its knowledge online by the 
perceptive inputs. For example, after receiving a RFQ 
message, the agent may update its knowledge about the 
number of RFQs as (number_of_RFQ 230).   

 
4.3. Knowledge-based system design 
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Figure 3. The new architecture for PSUTAC. 

The new architecture (Figure 3) is based on the 
needs for knowledge management including 
knowledge acquisition, use, and update. The agent has 
two functional modules: a database that keeps track of 
all transactional data and a knowledge base centered 
kernel. The database records daily transactions and 
decisions. Human designers may analyze data and 
code knowledge for the agent offline, or monitor the 
agent’s online performance through a situation 
awareness panel. In addition to the knowledge base 
(implemented in Jess), the kernel also contains four 
functional models on information fusion, situation 
awareness, decision making, and operational methods. 

The information-fusion model processes the 
incoming messages and extracts and combines data 
into facts that are useful for making decisions. The 
agent needs to process a large volume of daily 
information. For example, as many as over 300 RFQs 
can be sent to the agent in a day, and each RFQ 
contains information about product, quantity, and 
delivery date. Therefore, the information content of the 
messages is large in volume. To keep the information 
as raw data is time-consuming for later decision-
making functions because, each day, the agent only has 
limited time to process the data and make decisions. 
The information fusion module can greatly improve 
the efficiency by extracting and summarizing facts that 
are needed for making further inferences.  

After the knowledge base receives the updates from 
the information fusion module, the situation awareness 
module makes inferences and provides the results that 
the agent uses to make decisions. Situation awareness 
can be done quickly because the process is based on 
the facts, not raw data. The result can be used directly 
to match with patterns specified in the procedure 
knowledge to make decisions on operations. Although 
the agent can make inferences directly based on the 
facts, this step is necessary because (a) it forces 
designers to be precise when defining the decision 
variables; (b) since the result will be recorded in the 
database, it helps designers in location of problems; 
(c) the results will be displayed at a situation 
awareness panel, where the designers can evaluate the 
results by comparing them with observations. 

Each decision, or a fired procedure rule, triggers an 
operational method. For example, if the agent decides 
to set prices high, a high-price-setting function sets the 
selling prices to high values. Of course, the 
operation-method module defines a complete set of 
operators that are needed for the domain. It should be 
noted that the knowledge base does not need to keep 
knowledge that should be defined as an operator. For 
example, the procedure of the high-price-setting 
function should not be captured as knowledge. 



4.4. Benefits of the knowledge-based system. 
 
Compared with the old design, the knowledge based 

design provides many advantages: (a) different 
functional modules can access the entire knowledge 
base equally; (b) knowledge is organized as business 
rules instead of procedurally encoded “if…then…” 
statements, thus allowing an easy understanding of an 
agent’s mental model in various situations. Designers 
can also test the knowledge offline with predefined 
commands. In addition, the effects of individual pieces 
of knowledge can be evaluated online by adding or 
removing rules. (c) the knowledge base is independent 
of the core agent design, thus enabling incremental 
knowledge addition and modification. For example, if 
designers notice that the market report about total 
demand and supply should also be considered when 
assessing the customer’s demand, they can update the 
knowledge by retracting the rule defined in Table 2, 
and asserting new rules, as shown in Table 4. 

Table 4. New rules for assessing the 
customer’s demand 

((rfq high)  
(number_of_RFQ ?rfq)  
(> ?rfq 180));  

((market high)  
(demand ?demand) 
(supply ?supply) 
(> ?demand ?supply)) ; 

((demand high) 
(market high)  
(rfq high)); 

 
5. Conclusion 

 
One major drawback of our current design is its 

ability to handle uncertainty.  Rules and facts cannot 
capture uncertainty or imprecision that inherently 
presented in the TAC/SCM game. For example, the 
rule defined in table 2 separates the RFQ numbers 
between high or low with an arbitrary number—180. 
Consequently, the agent may change its pricing 
decisions radically when the number of RFQs is 
changed from 180 to 181.  

Bayesian statistics provide a good means for 
uncertain reasoning, but are impractical in complex 
environment.  Therefore, we will investigate the 
applicability of integrating either Bayesian networks or 
fuzzy rules into our design.  Fuzzy rules fit more 
naturally into our design, but Bayesian networks could 
also provide a means of evaluating the conditional 
likelihood of certain key decision variables before 
applying the rule set. 

The TAC/SCM problems are designed to capture 
the complexities, time-sensitivities, and dynamics of 
the real SCM domain.  Heuristics have been used 
extensively in the SCM game, indicating the criticality 
of human expertise in this domain. The complex nature 
of TAC game makes the heuristic development an 
iterative and protracted process.  The approach we 
have proposed aims to organize the knowledge 
required for this game efficiently.  For this reason, we 
believe the proposed design provides not only a viable 
agent for future competitions, but also an effective 
template for agent design in real supply chain 
scenarios. 
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