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INTRODUCTION

The advancement in sensor, communication, and information tech-
nologies have resulted in information-dense environments in which cur-
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rent and future warfighters must operate. In the face of dynamic,
constantly changing events and conflicting reports, this vast amount of
information makes it difficult for warfighters to develop and maintain a
clear picture of the operational situation. This difficulty is further com-
pounded by the challenges of asymmetric warfare where complex deci-
sions that consider multi-dimensional factors (e.g., human, social, and
cultural factors) are required not only for strategic planning, but also at
the operational and tactical level, across all echelons.

To address these challenges, this research, supported by the
Advanced Decision Architectures Collaborative Technology Alliance of
the U.S. Army Research Lab, aims to achieve two complimentary research
goals. Our first research objective is to develop a cognitively-inspired
decision agent architecture that supports the delivery of relevant
information to decision-makers in a timely fashion. These software
agents act as both teammates and decision aids, enhance the human’s
capability in reasoning across multiple decision spaces, and enable
dynamic team collaboration among decision makers. With its cognitive
foundations, functions and components in such an architecture can be
better related to the processes of human cognition. Such a relationship
between computational decision aids and human decision process can
contribute to the co-refinement of both the computational decision
architecture and the human-agent team cognition theory.

Our second research objective is to study factors that affect human-
agent interactions such that warfighters can better calibrate their auto-
mation usage and maintain global situation awareness (SA). Despite the
best intentions of automation designers, the current state of technology
does not produce perfect automation. On the battlefield, for example,
automation, like humans, must function in the face of uncertainty and in
sub-optimal environmental conditions. Warfighters, trained to operate in
teams, understand that these complexities may affect the judgments of
their human teammates, but sometimes fail to realize that agent team-
mates can be similarly affected. When warfighters fail to adequately
understand the factors influencing the performance of their agent team-
mates, they may make poor automation usage decisions (AUDs) and may
fail to appropriately trust their agent teammates. Previous research has
shown that trust in team members, whether human or agent, is critical in
mediating team operations, particularly with increasing levels of cogni-
tive complexity.

The objective of our cognitively-inspired agent system (R-CAST) is to
serve as decision aids and teammates of human decision makers. There
are many normative, descriptive, and prescriptive decision theories that
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can be built within an agent system. We chose to adopt Klein’s RPD
model (Klein, 1997) in R-CAST for several reasons. First, the RPD model is
a holistic model of human decision making processes, including activities
such as seeking relevant missing information, and monitoring expected
outcomes of decisions to detect anomaly. Second, operators can more
easily understand a decision aid based on a naturalistic decision process
(e.g., macro-cognitive process described in RPD) due to his/her familiar-
ity and experience with the process. This encourages active human-agent
collaboration along the decision process. Such a decision aid would be
intelligent not only in the evaluation and choice of options, but also in
social interactions with human decision makers.

With a computational RPD model as the macro-cognitive process,
the R-CAST system has been used in a series of experimental studies
toward a better understanding of human-agent collaboration in time-
stressed decision making situations. The first experiment was conducted
to help us to understand whether future warfighters can benefit from R-
CAST in handling complex multi-dimensional decision tasks. Being a
teammate of a human decision maker, the R-CAST system ought to be
trustable and understandable. The second and third experiments exam-
ined the issue of human-agent trust and raised the interesting question
of how to facilitate a suitable level of trust between warfighters and deci-
sion aids to improve the overall performance of the human-agent team.
The fourth experiment was conducted to evaluate the impact of provid-
ing a mental map visualization of the agent’s decision space to promote
automation transparency on effective human automation-usage deci-
sions.

The rest of the chapter is organized as follows. In section 2, we
describe related research regarding human-agent team cognition and its
relationship to human trust in agents. In section 3, we describe the R-
CAST agent architecture, which is empowered by a computational RPD
model. In section 4 we give an overview of a synthetic task designed for
studying multi-dimensional decision making. In section 5, we summarize
a series of human-in-the-loop experiments where the R-CAST agents
served as teammates and decision aids, investigating the issue of multi-
context decision making, human-agent trust, and mental map visualiza-
tion. Finally, we discuss the impacts of our work and point to some direc-
tions for future studies.
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HUMAN-AGENT TEAM COGNITION AND TRUST

Team cognition is traditionally involved with studying and specifying
the cognitive processes that impact team performance and that vary
with certain constraints. Team cognition requires that team members
maintain common ground, situation awareness, interdependence, and
flexibility as they pursue joint objectives. Team cognition embodies the
notion that teamwork is influenced by individual differences among team
members as well as the contextual environment within which a team
operates. Teamwork may also be influenced by many different social-cog-
nitive factors (McNeese 2000) or social psychological states (Wellens &
McNeese, 1987) that change how teams work and perform together. For
example, social psychological variables such as trust, affiliation, and sta-
tus may impact the specific nature of team cognition. In particular, this
chapter focuses on investigating factors that influence the interactions
between human and agent team members when agents are utilized to
support team cognition during a complex decision making task. In partic-
ular, we want to better understand how human operators’ trust in auto-
mation may potentially influence their subsequent automation usage
decisions (AUDs). Many of the factors that influence human-human team
collaboration also influence human-agent collaboration.

Trust can operationally be defined not just as an emotional state or
characteristic of the trustor, but rather by the behaviors and actions
taken by the trustor as the result of that characteristic. This distinction is
important in the current research effort as we focus on the calibration of
AUDs, a behavior that reflects the user’s feeling of trust. Specifically, we
seek to investigate the impact of providing users with information about
agent process that impacts predictability, the characteristic of the agent
trustee that most influences trust in the early stages of interaction with
the agent.

Human operators’ beliefs about and trust in automation mediate
their subsequent reliance on automated systems (such as intelligent
agents), ranging from the extremes of over-reliance and complacency to
under-reliance and mistrust (Cuevas, Fiore, Caldwell, & Strater, 2007; Lee
& See, 2004). This can lead to at least two potentially problematic situa-
tions, misuse and disuse (Parasuraman & Riley, 1997). In misuse (over-
reliance), the operator blindly follows the judgments made by the auto-
mation, thereby abdicating their role of system supervisor; while with
disuse (under-reliance), the operator either ignores the automation’s
recommendations or delays action until system judgments can be veri-
fied, increasing decision time. While the source for these errors differs,
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either type of error can have critical consequences; thus, the goal of
properly calibrating operators’ trust in automation and their AUDs seeks
to reduce both misuse and disuse of automation.

Given the broad range of factors influencing trust in automation and
AUDs, it is hardly surprising that research findings have been mixed (see
Beck, Dzindolet, & Pierce, 2002; Dzindolet et al. 2003; Lee & See, 2004).
Despite the abundant research on the topic, little practical guidance is
available to assist system designers in developing automated systems
that support the operator in making appropriate AUDs, particularly in
cases when optimal usage is a ‘moving target,” changing with environ-
mental conditions, workload, and other situational parameters.

Therefore, the long term goal of this research effort is to determine
techniques for calibrating AUDs by enabling users to gain adequate
understanding of agent functioning to allow for appropriate levels of
trust in their automated teammate.

RPD-ENABLED AGENTS: THE R-CAST SYSTEM

The R-CAST agent architecture (Fan et. al., 2005a; Fan & Yen 2007) is
built on top of the concept of shared mental models (Cannon-Bowers,
Salas, & Converse 1990), the theory of proactive information delivery in
agent teamwork (Cohen and Levesque 1991; Fan, Yen, & Volz 2005), and
the recognition-primed decision framework (Klein 1997). Figure 12.1
shows the major components of R-CAST, where the RPD process is the
kernel of the other functional units. Klein’s RPD model describes a holis-
tic process of human decision making, including all activities related to
human decision makings. These activities include identifying missing rel-
evant information, seeking information, interpreting information, build-
ing hypothesis, situation monitoring for detecting anomalies, and
decision adaption under unexpected situations. These activities are real-
ized in the R-CAST agent architecture such that (1) each agent can per-
form these functions individually, and (2) a group of agents can
collaborate on these functions as a team.

Like the RPD model, R-CAST agents match the current situations with
previous “experience” to determine their “similarity.” This matching pro-
cess is implemented in two ways in R-CAST: (1) choose the first experi-
ence with a similarity higher than a threshold, and (2) choose the
experience with the highest similarity. While the first approach is a com-
putational realization of the satisficing criteria of the RPD model, the sec-
ond approach offers an alternative that is closer to rationale decision-
making. This flexibility enables the developer of agent applications to
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choose the suitable scheme, depending on characteristics of the applica-
tion.
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The R-CAST Agent Architecture (Fan & Yen, 2007)

The R-CAST agents realize the “seeking missing information” compo-
nent in the RPD model using a backward (Prolog-style) chaining infer-
ence, starting with high-level cues of the experience being matched,
using rules in the agent’s knowledge base. When a piece of missing infor-
mation is identified through this backward chaining inference, the agent
contacts the information source associated with the missing information
through agent communication protocols realized in Service Oriented
Architecture (SOA). The information source can be another agent, a Web
service, or a human operator. When the requested information arrives,
the agent performs forward-chaining inference that fuses the newly
arrived (previously missing) information with other information know to
the agent. The outcomes of these fusions affects the degree a “decision
experience” matches the current situation. Hence, this fusion within an
agent typically corresponds to high-level information fusion (i.e., level 2
or above in the JDL data fusion model).

The R-CAST agent architecture also implements decision progress
monitoring and expectancy-based decision adaptation in the RPD model.
After a decision is made (either directly by an agent or indirectly by a
human operator based on the agent recommendation), the agent contin-
ues to monitors the expected outcomes (called “expectancy” in the RPD
model) associated with the chosen decision. If the agent detects an
anomaly (e.g., some expected outcomes not fulfilled), the agent adapts
the previously made decisions to deal with the anomaly.



Cognitive Agents as Teammates and Decision Aids 57

Finally, a team of R-CAST agents realizes a collaborative RPD process
(Fan, Sun, McNeese, & Yen, 2005), in which each agent anticipates infor-
mation requirements of teammates and can proactively assist them by
monitoring and/or seeking information relevant to their requirements.

Together, the features described above form a cognitively-inspired
agent architecture that not only supports warfighters in making decisions
and adapting them to changing conditions, but also in augmenting them
in their capabilities to sense, fuse, and interpret information in a multi-
dimensional net-centric environment .

A SYNTHETIC TASK FOR MULTI-DIMENSIONAL DECISION MAKING: THE
THREE-BLOCK CHALLENGE

To conduct experiments regarding multi-dimensional decision-mak-
ing of warfighters, we have designed and implemented a simulation envi-
ronment called “The Three-Block Challenge.” It can simulate command
and control scenarios of urban operations where in close proximity (e.g.,
within three blocks) military operators need to quickly react to chal-
lenges related to three dimensions of mission: the humanitarian relief
dimension, the peacemaking (i.e., policing) dimension, and the combat
dimension (Fan et. al., 2005).

The synthetic task environment contains objects of interest such as
main supply routes (MSRs) and key buildings (religious buildings, schools,
and hospitals). At run time, the environment can produce three types of
threats: Improvised Explosive Device (IEDs), crowds, and insurgents,
which represent the targets of humanitarian, peacekeeping, and combat
operations, respectively. IEDs are motionless targets, and if exploded,
can cause damage to the road (e.g., MSRs) and buildings nearby. A crowd
represents a group of people which may contain activists that can be
friends or foes. A crowd can be of medium (M) or large (L) size, and the
group size of a crowd can change over time. Two crowds can merge
together if they move close enough. Another type of movable targets is
insurgents, each is associated with a threat level that can be L(low),
M(medium), or H(high). A target may appear, stay on, and disappear
from the battle field following certain temporal and spatial patterns
unknown to human operators.

There are also a limited number of friendly units—squads and Explo-
sive Ordnance Disposal (EOD) teams—under the control of a C2 team.
Each friendly unit has an associated property called “combat readiness,”
which is represented by a percentage value, indicating current unit ability
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to handle threats. The readiness value decreases after a unit is tasked to
a threat, and can recover incrementally as time passes.

In our studies, a C2 team consists of an S2 suite (intelligence cell) and
an S3 suite (operations cell). The roles of C2 operators have been simpli-
fied. S2 is responsible for processing incoming reports, called Spot
reports; collecting relevant information from other sources; and alerting
S3 of potential threats. S3 needs to process alerts from S2, and make
decisions on which target to handle next and which resources (friendly
units) to allocate toward that target.

Table 12.1 Credit value and resource requirements for handling targets

Targets Value Res. Req. Action

M |w/o foe 20 1U monitor
M |wfoe 40(+10)* 2U disperse
Crowd L |w/ofoe | 40(+10)* 2U disperse
L |wfoe 50(+10)* 3U disperse

Insurgent n=1,2,3 for L,M,H
(3 threat levels: L, M, H) | 50+50n (n+1)U capture
IED 60(+20)* 1U + 1E remove

‘U’ refers to “squad unit”, ‘E’ refers to EOD team.
*additional credit value when a target is near an MSR.

Decision making in target selection and resource allocation requires
the S3 suite to consider trade-offs among multiple factors: target type,
threat level, the combat readiness of the available units, the unit-target
distance, and how long a target has been on the field. The type and
threat level of a target determine how many friendly units will be needed
to handle the target. Table 12.1 lists for each type of target the credit
value (the reward points a C2 team can get if a target is handled success-
fully), the number of resources required to handle a target, and what
action S3 should take. For example, the second entry says that dispersion
of a medium-sized crowd with a foe needs two squad units, and 40 points
can be credited if the crowd is dispersed successfully. The last entry indi-
cates that one squad unit and one EOD team are required to remove an
IED. If an IED is removed successful, 60 points can be credited if the IED is
close to buildings only or MSRs only, 80 points if it is close to both.
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HUMAN-AGENT EXPERIMENTS

Toward our goal of developing theory and technologies for support-
ing human-agent decision-making teams using cognitively-inspired
agents as teammates and decision aids, we have conducted a series of
human-in-the-loop experiments to investigate issues regarding multi-
context decision making, human-agent trust, and mental map visualiza-
tion.

We next briefly describe an example setting for the experiments
(other settings vary slightly, with or without R-CAST agents playing a role
in S2 or S3 suites). For each study, we then summarize the research ques-
tions and our main findings.

A Setting with R-CAST Agents in S3 Suite

The role of S3 suite is played by an R-CAST agent (S3 agent) and a
human operator. The human operator is equipped with two monitors: a
map display for tracking situation development, and a tasking interface
for collaborating with S3 agent to handle threats.

The map display shows all the active entities on the field, as well as
MSR’s, buildings, and regional boundaries. It allows a human operator to
highlight the target of interest, to figure out the spatial relationships
between targets, MSRs, buildings, and friendly units, and to project for-
ward the location of moving targets. The human operator needs to deter-
mine whether there are key buildings (e.g., hospital, mosque) near a
target when assigning units to the target. This is one way the social
dimension is introduced into the simulated C2 environment.

The tasking interface consists of a threat table, a command panel,
and a feedback display panel. The threats table shows consolidated infor-
mation about the threats on the field: for each threat, it lists threat type,
ID, status, crowd size, activists associated with a crowd, nearby buildings,
priority, elapsed time, and the IDs of the tasks associated with prosecut-
ing the threats.

The command panel allows the S3 human operator to physically task
units to the selected target. The feedback display panel shows some sta-
tistics about tasks issued, threats cleared, and reward points earned. In
the experiment, the S3 agent offers decision aids and recommendations
to the S3 operator regarding units to be assigned to a target selected by
the user. It is, however, the S3 operator who has the final authority for
decisions on target selection and resource allocation.
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Experiment 1: Supporting Multiple-Context Decision Making

In this study (Fan et. al., 2006), we focused on the challenge of
switching between multiple types of decision contexts. We chose this
cognitive challenge for two reasons. First, this is an important character-
istic of the multi-dimensionality of the warfighter’s mission. They need to
deal with multiple missions, which involve different types of threats. For
instance, a warfighter may need to deal with a combat mission (captur-
ing key insurgents), police mission (controlling crowds), and humanitar-
ian mission (making sure food, medicine, and supplies are delivered
safely along logistic routes) at the same time. Second, decision-making
involving different types of contexts introduces additional cognitive load,
due to the need to change focus between these contexts.
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C2 team performance varies with context switching frequencies

Two sets of experiments, each with various settings of context
switching frequencies and tasking complexities, were conducted. The
participants were US Army Reserve Officer Training Corps (ROTC) stu-
dents at Penn State. Figure 12.2 shows one of the experiment results.
Overall, the study demonstrated that C2 team performance, while still
limited by human cognitive capacity, could be largely improved when
they were assisted by R-CAST agents capable of proactive information
gathering/sharing and experience-based decision making. It also sug-
gests that higher demand situations require more competent team-
mates. The experiments represent an important step forward in
uncovering the nature of real-world problems that are highly relevant to
the vision of the US Army.
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Experiment 2: Human Trust on Cognitive Aids

As we mentioned in previous sections, human trust in agents is an
important factor that affects the calibration of his/her automation usage
decisions (AUDs). To improve our understanding of this phenomenon, we
introduced error into the agent recommendations: the agents did not
consider unit combat readiness. In this experiment, we focused on the
relationship between S3 operator and S3 agent, with the S2 function
simulated by an R-CAST agent without an S2 operator. Our research
guestion is whether knowledge about the source of agent error affects
human trust in the agent. Sixty command and control teams, each
consisting of a human operator and two intelligent agents, allocated
resources to targets in simulated urban combat scenarios. We used a
mixed 2 x 2 x 2 x 3 factorial treatment design (PG x KAR x TC x RIT),
where TC (task complexity) and RIT (ratio of insurgent threats) are
within-subjects variables and KAR (knowledge of agent reliability/error)
and PG (participant group: ROTC students vs IST students) are between-
subjects variables. The experiment group was informed about the
agent’s source of error, whereas the control group was not informed
about the source of errors. Both groups were informed about the same
set of game rules and the agent’s reliability measure.

The ANOVA output indicates that both the knowledge of agent
reliability (KAR) and ratio of insurgent threats (RIT) had significant effects
on C2 performance. Figure 12.3 shows that knowing the agent reliability
helped the S3 operators rectify more inappropriate recommendations.
Together with the analysis of the SAGAT and NASA-TLX measures, this
study indicated that giving even a minimal basis (i.e., knowledge about
the source of error from agents) for understanding conditions impacting
agent reliability allowed operators to make better automation usage
decisions, have better SA on the critical issues associated with
automation error, and establish better trust in the intelligent agents.
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This result is different from previous research regarding automation
usage decisions (Dzindolet et. al. 2003) that involves randomly generated
errors. This motivated us to investigate the impact of predictable versus
random error on human AUDs.

Experiment 3: Agent Error Patterns and Human Trust Calibration

Our research question in this study is, are AUDs different in interac-
tions with random agent error as compared to predictable error (that is,
when error patterns are present)? To investigate this, we designed a
study with both a random error condition and a systematic or predictable
error condition. To ensure a fair comparison, the error rate in the two
conditions were comparable, though errors were actually lower in the
random error condition. The results, shown in Figure 12.4, indicates that
operators teamed with agents with systematic errors that the user can
make sense of make more appropriate AUDs than operators teamed with
agents that make random errors.

Based on the findings of Experiment 2 and Experiment 3, we pro-
posed a model about human-agent trust, in which the decision maker’s
attempt to make sense of the error patterns play an important role in
his/her decision on accepting an agent recommendation or not (Strater
et al, in review). Using this model, we can explain the finding described
above as follows. With agent errors that the decision maker cannot make
sense of (e.g., random errors), the decision maker cannot distinguish
reliable recommendations from erroneous ones and thus cannot prop-
erly calibrate AUDs. For errors that the decision maker can make sense of
(e.g., errors due to ignorance about combat readiness criteria), under-
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standing error patterns allows operators to distinguish reliable recom-
mendations from those that are not reliable and helps calibrate AUDs.
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Experiment 4: Visualizing Mental Map of RPD Agents

In order to serve as effective teammates, enhancing shared SA and
stimulating the user’s active participation, R-CAST agents’ need the abil-
ity to expose their internal states and reasoning process to the human
user. Towards this end, we implemented a visualization concept into R-
CAST and conducted an experiment to examine the influence the visual-
ization concept (information presentation) had on effective AUDs and sit-
uation awareness.

Specifically, we designed a visualization concept that helps establish
a mental map of the agent’s decision space while promoting transpar-
ency of the underlying agent recommendation process and higher-level
SA (comprehension and projection). In this visualization, we reduce the
dimension of the experience space of an RPD-agent onto a 2-D display
and dynamically position the current agent-state onto the display based
on shared similarity measures. Figure 12.5 shows an example of the R-
CAST Visualization of the Agent Decision Space (VADS). The VADS maps a
collection of past experiences or Common Historical Cases (CHCs) and
current target icons based on their relative similarities. In addition to
temporally repositioning active targets on the VADS, the conveyance of
information about a target or a related CHC is augmented with the use of
iconic symbols.
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To assess the effects of the visualization concept, we modified the
Three-Block Challenge synthetic task environment to emphasize the
importance of crowd control. The study employed a 2 (visualization
mode) x 2 (work load) x 2 (task complexity) mixed design. The between-
group factor was the mode of visualization (experimental group utilizing
mental map visualization vs. control group utilizing tradition table visual-
ization). The two within-group factors were the scenarios’ workload (5
crowds vs 10 crowds) and level of task complexity (ratio of fast-burning vs
slow-burning crowd movement). The dependent variables included task
performance, situation awareness, trust in automation, and subjective
workload. Thirty two ROTC students from Penn State participated in the
experiment, which included four 10-minute scenarios for each subject.
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R-CAST Visualization of Agent Decision Space (VADS)

Overall, the preliminary results have revealed improvement in both
task performance and SA. One of the measures calculated for task perfor-
mance was the product of Score and Real-time SA. The un-normalized
result for this ANOVA measure showed the experimental group scored an
average 20 percent improvement over the control group. Detailed results
of the experiments will be reported in a separate paper.
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CONCLUSION AND IMPLICATIONS FOR THE FUTURE ARMY

The ARL ADA CTA research initiated throughout the past five years
shows significant results that inform and have impact within several key
areas: cognitive science, agent architectures, human-computer interac-
tion, and automation and trust.

Looking at the area of cognitive science first, much of the results
obtained are directly informative and applicable for how a command,
control, and communications (C3) team addresses a very complex, evolv-
ing C3 mission to keep stability ongoing in the Iraqi warfront. The mis-
sion and scenarios incorporated into the experiments are important as it
represents how team members must adaptively assign and adapt
resources for Iraq multi-target, multi-faceted C3 mission. As this mission
and scenarios were developed through knowledge elicitation with
experts, it is both contemporary and representative of dynamic cognitive
processes wherein team members must analyze changes and adapt their
resources accordingly under periods of time pressure. Many studies in
cognitive science utilize more toy domains with static cognitive pro-
cesses, and do not involve the levels of complexity and replanning while
retaining necessitated balance across ongoing multi-layered mission
objectives that often have to be traded off. The experimental studies
conducted also incorporate two other integrated aspects of cognitive sci-
ence: 1) adaptive use of automation given understanding of trust in the
agent, and 2) measuring situation awareness in addition to human per-
formance. By manipulating elements of trust we have been able to
determine how trusts develops based on what human believe the auto-
mation is capable of doing (e.g., how reliable it is). This is extremely valu-
able for designing and coupling humans with intelligent agent
architectures in a way wherein the joint interaction can address dynamic
cognitive states that arise. Because previous studies typically only use
agents that are not evaluated in terms of trust with human, and utilize
agents that do not employ recognition-primed decision making strate-
gies, previous studies often only address static cognitive states. With the
complexities in contemporary teamwork and advanced missions, our
research is directly applicable. Because our studies look at situation
awareness in addition to direct human performance measures, a deep
understanding of how cognitive processes interact with automation is
possible. The impact of these elements is significant because it provides
a baseline for understanding how agents will need to be designed to fit
human cognitive capacities, while at the same time providing a baseline
on how human trust develops with differing information about the
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agents. Together these elements advance cognitive science and human-
agent interaction in innovative ways that afford potential increases in the
overall war-fighter mission.

From the perspective of agent architecture, this research has
resulted in a comprehensive cognitively-inspired agent architecture that
is designed to serve as both a decision aid and a teammate for warfight-
ers. Based on Klein’s Recognition-Primed Decision (RPD) model, the RPD
agent provides a computational framework regarding the holistic human
decision making process, which can assist warfighters in making deci-
sions across multiple contexts/missions, collaborative sensing and seek-
ing information relevant to the needs of warfighters, fusing information
for situation understanding in a distributed net-centric environment, and
detecting changes that require adaptation of decisions previously made.

From human-computer interaction perspective, one of the principal
challenges in supporting close human-agent collaboration is increasing
automation transparency to align the decision maker’s understanding of
the decision space (mental model) with that of the intelligent software
agents working on their behalf. Enabling technologies that allow the con-
veyance of information (complex insights, experiences, and high-level
concepts) and its correct application is critical. One method examined in
this research to improve human-agent understanding is information visu-
alization. In this research we examined a visualization concept designed
to enhance the decision maker’s perception, comprehension, and projec-
tion of the underlying knowledge space while improving shared human-
agent SA. Allowing a holistic view of the agent decision space provides a
transparent view not only of the agent decision process but equally
important, encourages active participation from the user—allowing for
the adjustment of contextual constraint, the ability to prioritize missing
information and ultimately, improved decision making.

In summary, the research described in this chapter contributes to the
technology for designing cognitively-inspired agents as well as our under-
standing about the principles regarding the macro-cognitive processes of
human-agent team cognition and decision making, especially on the
issue of trust in automation and the resultant automation usage deci-
sions (AUDs). This understanding, in turn, can be adopted to enhance the
design of intelligent agents. Hence, the design of cognitively-inspired
agents, the findings of human-centric experiments, and the theory of
human-agent team cognition form a cycle of synergistic research road-
map, which drive human/social science and computational/information
technology forward toward the vision of equipping warfighters with cog-
nitively-inspired agents as teammates and decision aids. From this, suit-
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able levels of trust can be developed to enable effective human-agent
team performance for complex multi-facet decision making across strate-
gic, operational, and tactical missions.
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