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Abstract 
 

Proactive information sharing is a challenging issue faced by intelligence agencies in effectively 

making critical decisions under time pressure in areas related to homeland security. Motivated by 

psychological studies  on human teams , a team-oriented agent architecture -- CAST (Collaborative 

Agents for Simulating Teamwork), was implemented to allow agents in a team to anticipate the 

information needs of teammates and help them with their information needs proactively, 

effectively, and timely. In this paper, we extend CAST with a decision-making module . Through 

two sets of experiments in a simulated battlefield, we evaluate the effectiveness of the decision 

theoretic proactive communication strategy in improving team performance, and the effectiveness 

of information fusion as an approach to alleviating the information overload problem faced by 

distributed decision makers.  

Keywords : Homeland Security, Information Overload, Agent Teamwork, Team Decision-making 

1. Introduction  

A team of knowledge workers in a homeland security (HS) area face many challenges in their 

information processing and decision makings for detecting potential terrorist threats, preventing 

them from occurring, and/or responding quickly and appropriately to terrorist attacks that actually 

occurred [28].  First, they need to process, interpret, and analyze a huge amount of highly 

dynamic information. Second, due to the broad scope of homeland security issues, the knowledge 

and expertise for interpreting and fusing information related to homeland security is often 

distributed among a HS decision making (DM) team.  For example, one member of the team may 

be an expert in terrorist organizations, while another is an expert in biological threats. Third, 

members of the team may have different access to various information sources due to security 

concerns or due to their role and responsibility in the team.  For example, an analyst may have 

access to satellite images while another analyst has access to intelligence reports.  These three 
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challenges can significantly hamper the quality and the timeliness of decision makings in 

homeland security areas, which can have shocking consequences. 

 

Several existing technologies can be leveraged to address some of these challenges.  For example, 

multiple heterogeneous information sources can be integrated to enable the processing of queries 

that pull information from multiple sources.  Search engines (especially those specialized in 

certain areas) and advanced information retrieval techniques can be used to find and filter 

information from the Web and other text documents. While these techniques can be part of a 

solution, they do not address the challenge of helping a HS DM team, with different knowledge 

and information access, to better collaborate  with each other for effective team decision makings.   

 

Obviously, the identif ication of cognitive factors that contribute to high-performance human 

teams is critical for investigating theories, models, algorithms, and software implementations that 

can simulate these cognitive factors to assist human DM teams. Psychological studies about 

human teams have repeatedly point out that high performance human teams share certain 

characteristics, which include the following: 

• They can often anticipate needs of other teammates; 

• They can proactively help teammates regarding their needs. 

One of the team cognition theor ies that attempt to explain these teamwork behaviors introduces 

the notion of “shared mental model” [7], which refers to an overlapping understanding among 

members of the team regarding their objectives, their structure, their process, etc.     

 

The long-term goal of our research, hence, is to develop theories, models, and agent technologies 

that can assist a human/agent DM team by proactively delivering needed information to 

teammates, whether it’s a human or an agent, based on each agent’s computational representation 

of a “shared mental model” (SMM) about the team.  Toward this vision, we have developed an 

agent architecture called CAST (Collaborative Agents for Simulating Teamwork) [44].  

 

This vision responds to the challenges for HS DM teams in two important ways.  First, it helps a 

team member to receive information that he/she needs but can not access.  Second, it enables an 

agent to fuse information using its knowledge to reduce the cognitive load of a teammate (both in 

processing and interpreting information).  To assess the potential benefits of CAST agent 

technology in supporting HS teams, in this paper we extend CAST with a decision-making 

module and carry out experiments using the domain of network-centric warfare (NCW) [1], 

which shares all the challenges of homeland security team described above. In network-centric 
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warfare, an overwhelming amount of information about the battlefield situations needs to be 

analyzed. Members of a command and control team in the battlefield (i.e., the operational center 

of an echelon unit), for instance, often receive different information due to the difference of their 

sensing capabilities and their location. Finally, the knowledge and expertise are distributed among 

such a team according to their roles. For instance, an intelligence officer is knowledgeable about 

assessing enemy threats, whereas a logistic officer is knowledgeable about planning and 

scheduling supplies.  We hope the experiments based on network-centric warfare can provide an 

initial assessment about the potential utility of applying CAST agent technology to developing 

cognitive aids for supporting HS DM teams.   

 

The rest of the paper is organized as follows.  Section 2 gives the background of shared mental 

model and rela ted agent technologies. Section 3 briefly describes the CAST architecture. We 

extend CAST with a decision-making module in Section 4, and report the design and results of 

two experiments in Section 5. The potential applications of CAST in ISI related domains are 

further discussed in Section 6, and Section 7 concludes the paper. 

2. Background  

2.1. Research on Shared Mental Models 

Mental models are an internal representation of a situation that has a property of “completeness” 

at a certain level of granularity.  A typical example of a mental model is an image (concrete, 

explicit), which contrasts with the logical/relational description of a scene (implicit, requires 

inference), though many other representations of mental models are possible (including vivified 

databases [3] and Bayesian probability estimates[5]). 

 

Shared mental models are a hypothetical cognitive construct that extends the notion of individual 

mental models to a team context [29].  A shared mental model produces a mutual awareness, with 

which team members can reason not only about their own situation, but also the status and 

activities of the other team members in the pursuit of the joint goals. It has been put forward to 

explain certain coordinated behaviors of human teams [7][8][29][33][31]. 

 

The scope of shared mental models is very broad, which may involve shared ontology, common 

knowledge and beliefs, joint goals/intentions, shared team structure, common recipes, shared 

plans, etc. The need for agents to share ontology has long been recognized as an important issue 

for agents to be able to understand each other [12]. A shared ontology provides the common 

vocabulary for agents to communicate directly. Without a shared ontology, agents can 
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communicate only through a “broker” who provides translations between different ontologies. 

Efforts (e.g., DARPA Agent Markup Language[12] [14]) have been made to facilitate sharing 

ontology on the semantic web. 

 

Common knowledge (beliefs) of the domain problem under concern, the communication 

protocols to use, the assumptions to take (e.g., agent sincerity, communication reliability, etc.) 

establishes a common basis for agents to understand and respond to each other’s behaviors. A 

team structure may specify such information as membership of a team, sub-team relations, pre-

determined team leader, roles each member can play, capability requirements on each role and so 

forth [43]. To have a shared team structure enables an agent to develop a higher level abstraction 

about the capabilities, expertise, and responsibilities of other team members.  

 

Most collaborating agents have shared goals, either explicitly or implicitly. Joint intention theory 

[10] formally defines the meaning and implications for multiple agents to commit to a shared goal 

(i.e., joint intention).  The theory requires a team of agents with a joint intention to not only each 

try to do its part in achieving the shared goal, but also commit to informing others when the agent 

detects that the goal has been accomplished, becomes impossible to achieve, or becomes 

irrelevant.  From the viewpoint of SMM, this means that agents are committed to maintaining a 

shared mental model about the status of the shared goal.   

 

Shared knowledge about the process of a team provides the roadmap/recipe about how the team 

plans to accomplish its goal. In military, for instance, such a team collaboration process of a 

particular echelon unit (e.g., a battalion) is specified in its “operational order”.  The main 

advantage of having a process shared is that it forces the consequences of a situation to be worked 

out and realized, and allows predictions to be made, which can be very useful for anticipating 

what is likely to happen in the future. The work most related to shared team process are the 

notion of common recipe in the Joint Responsibility model [23] and the notion of shared plans in 

the SharedPlans framework[15][16].  Common recipe provides a context for the performance of 

actions in much the same way as the joint goal guides the objectives of the individuals [23]. A 

shared plan is characterized in a mental-state view as a particular collection of beliefs and 

intentions; an agent is said to have a shared plan with others if and only if the agent works 

towards establishing and maintaining those required mental attitudes, and it believes the other 

agents do so likewise [17]. The SharedPlans theory provides a basis for formalizing the proactive 

information delivery behavior of team agents [41].  
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Shared mental models can be measured in terms of the degree of overlap or consistency among 

team members’ knowledge and beliefs [8].  Due to the importance of shared mental models to 

teamwork, fostering the development of shared mental models has been the target of several 

practical methods for training teams.  Methods to increase the overlap of dynamic information 

(e.g. about situation, workload, etc.) include encouraging frequent communication of individual 

updates during a scenario to keep other members of the team informed and to detect 

inconsistencies or changes early on.  A popular method aimed at increasing the overlap of static 

knowledge (e.g. of roles and responsibilities) is cross-training [2][6][39]. 

2.2. Research on Agent Teamwork 

Teamwork has been the focus of a great deal of research in Distributed Artificial Intelligence 

field. Joint Intention theory and SharedPlans theory are two widely-accepted formalisms for 

teamwork. To distinguish team behavior from coordinated individual behavior (i.e., individuals’ 

goal happens to be the same), a notion of joint mental attitude—joint intention, is introduced 

based on the concept of joint persistent goal [10]. Joint intentions can be viewed as a joint 

commitment to perform a collective action to achieve a certain joint goal. Joint intention theory is 

significant because it not only offers a framework for studying numerous teamwork issues, but 

also provides a guide for implementing multi-agent systems. 

 

The SharedPlans formalism originates from Pollack’s mental state model of plans [30].  In 

[15][16] , Grosz and Kraus formalized the concepts of individual plans and shared plans, and 

explored how a shared plan for a team action evolves from partial (possibly with partial recipe) to 

a final complete form with complete recipes for the team action and all the subsidiary actions at 

different levels of abstraction. In evolving a shared plan, although the common recipe tree 

becomes complete from external, team members may only possess different partial views of the 

tree. In pursuing their common goals, it is the shared plans that ensure team members to 

cooperate smoothly rather than prohibiting each other’s behavior, which may occur otherwise due 

to the partial views of the common recipe tree. 

 

Several computational models of teamwork have been developed for producing cooperative 

behaviors among intelligent agents.  GRATE* is an implemented system based on the Joint 

Responsibility model[23]. Mainly focusing on handling unexpected failures, the Joint 

Responsibility model refines Cohen and Levesque’s joint intention theory by explicitly capturing 

different causes of recipe failures. Specifically, it clearly specifies the conditions under which an 

agent involved in a team activity should reconsider its commitments (three related to joint goal 

commitment: goal has been attained, goal will never be attained or goal motivation no longer 
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present; four related to common recipe commitment: desired outcome is available, or recipe 

becomes invalid, untenable or violated). The model furthermore describes how the agent should 

behave both locally and with respect to its fellow team members if any such situations arise: it 

should drop the commitment and must endeavor to inform all the other team members so that 

futile activities can be stopped at the earliest possible opportunity. In GRATE*, an organizer 

(leader) agent plays a critical role in carrying out a team activity. It is responsible for detecting 

the need for joint actions, for establishing a team and ensuring members’ commitments are as 

required by the team’s joint responsibility.  

 

STEAM [37] is a hybrid teamwork model that borrows from the strengths of both the joint 

intention theory and the SharedPlans formalism. It uses joint intentions as a building block to 

hierarchically build up the mental attitude of individual team members, and ensure that team 

members pursue a common solution path. STEAM exhibits two valuable features: selective 

communication and the way of dealing with teamwork failures. In STEAM, communication is 

driven by commitments embodied in the joint intentions theory, as well as explicit declaration of 

information-dependency relationships among actions. To make a decision on communication, 

STEAM agents take into consideration the communication costs, benefits, and the likelihood that 

some relevant information may be already mutually believed.  To handle failures, STEAM uses 

role-monitoring constraints (AND, OR, dependency) to specify the relationship of a team 

operator and individual’s or subteam’s contributions to it. When an agent is unable to complete 

actions in its role and the embedding team operator is still achievable, the remaining agents will 

invoke a repair plan accordingly.  

 

COLLAGEN [34] is the first implemented system based on the SharedPlans theory. It 

incorporates certain algorithms for discourse generation and interpretation, and is able to maintain 

a segmented interaction history, which facilitates the discourse between human user and the 

intelligent agent. Another team-oriented agent architecture, which is based on the RETSINA 

individual agent architecture [36], is proposed in [13]. A partial plan (which is a high-level 

description of the mission under concern and resembles a SharedPlans recipe) is initially shared 

among the team-oriented agents. This plan is continually updated and revised throughout the 

execution of the mission; such a process is reminiscent of the SharedPlans’ partial plan 

refinement process. In addition, they explicitly recognized the notion of checkpoints as a 

mechanism by which teammates can communicate and verify the progress of commitments to a 

goal. 
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3. CAST--Collaborative Agents for Simulating Teamwork 

CAST is a teamwork model that enables agents, whether they are software agents or human 

agents, to anticipate potential information needs among teammates, and exchange information 

proactively [44]. It has been designed to study teamwork-related issues emerging from teams with 

well-defined structure and process, distributed expertise, and limited communication in time-

stress domains. Fig.1(a) depicts a team of CAST agents, where some of them interact with human 

users as assistants. Briefly, the key features that distinguish CAST from the aforementioned team-

oriented agent architectures include: 

• CAST employs a richer generic language for encoding teamwork (recipe) process, where 

the constraints for task assignments, preconditions of actions, decision points within a 

process and termination conditions of a process can be specified explicitly. The other 

agent systems either lack an explicit encoding language or have a language that is limited 

in describing complex team processes; 

• CAST is empowered with a richer notion of shared mental model—shared team process 

(including both static team recipe and dynamic team process); 

• CAST agents, based on the richer SMM, are able to dynamically anticipate teammates’ 

relevant information-needs and proactively deliver the needed information to them. 

3.1. The CAST Architecture  

As shown in Fig.1(b), an CAST agent is composed of six components: Reasoning Engine (RE), 

Shared Mental Model (SMM), Individual Mental Model (IMM), Team Process Tracking (TPT), 

Proactive Behavior (PB), and Goal Management (GM) (we will extend CAST with a decision 

making module in Section 4). Briefly, the RE, based on the current states of SMM and IMM, 

triggers appropriate algorithms in TPT, PB and GM to monitor the progress of team activities, to 

select goals to pursue, to anticipate others’ information needs and proactively help them. The 

execution of these mental operations will further affect the evolution of the shared and individual 

mental states. 

 

The TPT module encapsulates two algorithms: Process-Interpreter &Coordinator (PIC) and 

Dynamic-Agent-Assignment (DAA). In CAST, team processes are originally coded in a high-level 

language called MALLET (Multi-Agent Logic-based Language for Encoding Teamwork), a 

logic-based language for specifying the structures and processes of agent teams [43]. To facilitate 

dynamic reasoning and monitoring, team processes are internally represented as Predicate-

Transition (PrT) nets [11][40], which are generated offline by a MALLET Parser. The PIC 

algorithm is used by individual agents to interpret and manipulate a team process so that they 
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could collaborate smoothly both when everything is progressing as planned and when something 

goes wrong unexpectedly. More specifically, in normal circumstances, PIC ensures all the team 

members behave, react, and deliberate strictly according to the committed (intended) plans (i.e., 

courses of actions), and synchronize their behaviors whenever necessary. When agents encounter 

in exceptional circumstances, they use their PICs to collaboratively adapt to changes in the 

environment. 

 

Initially, the internal PrT nets are only partially instantiated (i.e., with the actors of some tasks to 

be resolved at run time). Each unresolved task can be associated with certain constraint 

conditions (e.g., requirements on roles, agent workload, etc.). The DAA algorithm is responsible 

for initiating communications at appropriate time to determine suitable  actors for those 

unresolved tasks in the team process. The result of the DAA will further affect an agent’s 

reasoning about others’ information needs. 

 

The PB module encapsulates all the proactive teamwork capabilities. One algorithm in PB, called 

DIARG (Dynamic Inter-Agent Rule Generator), implements the proactive information delivery 

behavior as exhibited in effective human teams. The foundation of DIARG algorithm has been 

established by extending the SharedPlans theory with the formal semantics of proactive 

communicative actions [41][42].  Dynamic-Information-Flow-Table (DIFT) is a data structure 

related to DIARG. Each agent generates an internal DIFT at compile time by extracting the 

potential information needs from the team process specified in MALLET.  DIFT can be 

dynamically updated to reflect the most current information-needs relationships among the team, 

and is used by DIARG to anticipate teammates’ information-needs. Upon acquiring new 

information from the environment, DIARG checks DIFT to see whether the new information 

matches some teammates’ future information-needs. If there is a match, the agent will consider 

sending out the new information to the corresponding needers proactively.  

 

An agent may have multiple goals. Some are individual goals and some are team goals; some 

may have temporal relations while some may not. The GM module is used by a CAST agent to 

select a goal to pursue, or suspend the pursuit of one goal and switch to another; both are based 

on the agent’s situation assessment and cooperation requests from other agents. Once a goal is 

committed, GM will find a plan that can achieve the goal; the PrT net generated for the plan will 

become the agent’s work process.  
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IMM stores those mental attitudes privately held by individual agents. In its IMM an agent may 

maintain its inference knowledge (e.g., Horn-clauses), its own beliefs about the dynamic world, 

beliefs about the capability of others, or even beliefs about the beliefs of others.  It is 

continuously updated by sensor inputs and communication messages received from other agents.  

CAST agents currently employ an embedded JARE (Java Automated Reasoning Engine)[22] as 

the inference engine and the manager of IMMs. An agent will cast all the queries (for checking 

conditions or constraints) to, and wait for answers from its JARE. CAST supports belief 

reasoning of other teammates by inferring from their observability, or from the observable effects 

of actions already completed. This is important for CAST agents to be able to anticipate other 

teammates’ information needs, which highly impacts the information exchanges among team 

members.   For instance, suppose crime analyst A can observe the behavior of a suspect if A and 

the suspect is in the same building. Given information about the location of A and the suspect, a 

teammate of A (who is equipped with advanced locating systems) can infer whether A can 

observe the suspect. Then, the teammate may choose to inform the location information of the 

suspect to A proactively if he infers that A cannot observe it. 

3.2. The Computational Shared Mental Model in CAST 

The SMM stores the knowledge and information that are shared by all team members. It has four 

components: team process, team structure,  domain knowledge, and DIFT. The team process 

component can be further split into static part and dynamic part. The static part is a collection of 

plans represented as PrT nets, which describe how the team is to accomplish its goals. These 

plans are more like incomplete recipes in the SharedPlans theory, since the performers of 

unresolved tasks need to be determined at run time. The dynamic part is a collection of token 

configurations, each of which tracks the current progress of the corresponding plan. The team 

structure component captures those knowledge specifying roles in the team, agents in the team, 

and the roles each agent can play.  The domain knowledge component describes domain-

dependent common knowledge shared by all the team members, such as each agent’s 

observability (used to approximate nested beliefs), communication protocols, inference rules, 

domain expertise, etc.  The DIFT component maintains the dynamic information-needs 

relationships (i.e., make sure the information needs reflect the current status of team activities).  

 

Currently CAST supports three kinds of information-needs. First, CAST is implemented such that 

each team member commits to letting others know its progress in the current team process. Such 

communication for synchronization purpose is motivated by the built-in information-needs: each 

agent needs to know others progress in order to maintain the SMM regarding the dynamic status 

of team process. It is such built-in information-needs that provide the cohesive force [9]that binds 
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individual CAST agents together as a team. On the one hand, as information-needs they are part 

of the shared mental model; on the other hand, they are leveraged to maintain the other part 

(progress of team process) of the shared mental model. The second kind is those information-

needs explicitly coded in a team process.  CAST agents can extract the pre-conditions, 

termination conditions and constraints associated with (sub-)plans in a team process, and 

establish partial information-flow rela tionships based on incomplete knowledge. These partial 

relationships can be further refined at run time as the team do dynamic agent assignments. The 

third kind of information-needs is those explicitly communicated among teammates.  

 

In our opinion, SMM is different from mutual beliefs (MB) in that SMM emphasizes more on the 

strong commitment from the involved agents towards maintaining certain shared awareness. In 

other words, having a shared mental model, all the agents are committed to  eliminating the 

differences that may emerge. For instance, when an agent finishes a task step, the agent will 

inform others that it will proceed to the next. This communication is entailed by its commitment 

to maintaining the shared awareness of the progress of team activit ies. It is such commitments 

that force individual agents to communicate their private information, if necessary, to teammates, 

just like the role joint intention plays in the joint intention framework[10]. 

4. Extend CAST to support decision-makings 

The purpose of maintaining the SMM among team agents is to allow agents to leverage the 

computational shared mental model to achieve effective teamwork. As already mentioned, the 

SMM is used in algorithm DIARG to anticipate others’ information needs. In this section, we 

extend CAST with a Decision-Making module to allow CAST agents to make decisions on (1) 

the next course of actions when facing a choice point; (2) whether to inform others when 

obtaining a new piece of information; and (3) whether to fuse information before delivery when 

the recipient’s cognitive capacity is considered. SMM is critical in making all of these kinds of 

decisions.  

4.1. Making decisions  at explicit decision points  

The MALLET language has a CHOICE construct, which can be used to specify explicit choice 

points in a complex team process. For example, suppose a fire-fighting team is assigned to 

extinguish a fire caused by an explosion at a chemical plant. After collecting enough information 

(e.g., chemicals in the plant, nearby dangerous facilities, etc.), the team needs to decide how to 

put out the fire. They have to select one plan if there exist several options.   
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The choice construct is composed of a list of branches, each of which specifies a plan ( a course 

of actions) and may be associated with preference conditions and a priority information. The 

preference conditions of a branch is a collection of first-order formulas; the evaluation of their 

conjunction determines whether the branch is workable  under that context. The priority 

information is used in selecting a branch in case that the preference conditions of more than one 

branch are satisfiable.  

 

The following algorithm is implemented in CAST to allow an agent to make decisions on the next 

course of actions the team should take. 

 
Algorithm 1: CPDDM () /*choice point decisions by designated decision maker*/ 

1. Upon reaching a choice point, each agent checks if itself is the designated decision 
maker; 

2. If it is, the agent evaluates the preference conditions of the potential alternatives based on 
the information available currently. The branches whose preference preconditions is 
satisfiable are marked as workable .  

a. If there is only one workable branch, this branch is committed; 
b. If there are more than one workable branch, the branch with the highest priority 

is committed. If there are more than one branch having the highest priority, 
randomly select one; 

c. If there is no workable branch, wait one step (more information becomes 
available) and restart CPDDM(); 

d. Inform the other teammates of the chosen branch, and skip to step 4; 
3. If not, wait until being informed of the choice from the decision maker; In the meantime, 

anticipate the information-needs of the decision maker and proactively deliver 
information that can improve its situation awareness for making better decisions; 

4. All team members perform the selected course of actions; In the meantime, in case some 
agent detects the execution should be terminated, it will let others know so that all the 
agents involved in the current team activity can backtrack to the last choice point, and 
choose another COA if needed. 

 
This collaborative decision-making algorithm requires a team member be designated as the 

decision maker, who on behalf of the whole team makes the final decisions. Such leader based 

team decision making is well adopted in practical systems (e.g., [16]) due to its simplicity: no 

negotiation among teammates is needed to compromise their individual decisions. Furthermore, 

The algorithm prescribes a decision-making process that emphasizes on the proactive information 

sharing rather than the computational logics. Hence, it can be easily extended to support 

naturalistic decision makings (e.g., Recognition-primed decision making model[25]).  

4.2. Making decisions on proactive communication 

An agent will consider proactively sharing a piece of information with other agents if it believes 

this will allow them to make better decisions or prevent them from getting stuck in action 

performing. However, when communication cost is not neglectable , proactive information 
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delivery may not always benefit the whole team. For instance, the messages to teammates may be 

overheard by agents in an opposite team, who may change their tactical strategies accordingly to 

attack the first team. To avoid this, an agent should evaluate the tradeoff between the benefits and 

the potential costs of sharing information before actually doing it. 

 

Generally speaking, factors affecting a decision on proactive communication can be grouped into 

two categories: (1) communication costs to self and (2) impacts to teammates.  The first factor 

may involve uncertainty due to the characteristic of the environment.  For instance, if an agent 

communicates in a battle space, it may be detected by the enemy with a certain probability (based 

on knowledge about the sensing capabilities of the enemy).  The second factor is the agent’s 

belief about how useful the information is to the teammate, and how much damage the teammate 

will suffer if the information is not delivered. 

 

We extend CAST with a decision-theoretic communication strategy which considers 

communication costs and the uncertainty of the different possible outcomes in calculating the 

expected utility of “sending a piece of information”.  A similar calculation can be made for the 

expected utility of not sending the information.  Agents simply choose the alternative with the 

higher expected utility [20]. In other words, if the expected utility of sending information exceeds 

the expected utility of not-sending, a CAST agent will choose to proactively deliver the 

information to the needers, believing the potential benefit outgoes the communication cost.  

 

We use need(B,I) to denote the fact that agent B will need information I (in some future), and 

assume that agent A believes need(B,I) in case that (1) A believes B potentially intends to do some 

action (in the near future) and I matches with some conjunct of the action’s pre-condition; or (2) 

A believes B potentially intends to do some action (in the near future) and I matches with some 

conjunct of the action’s termination-condition; or (3) A believes I is essential for B to pursue a 

goal, i.e., not having information I (e.g., threat information) endangers the achievement of the 

goal B is pursuing. Thus, from A’s viewpoint, the probability of need(B,I), denoted as p, depends 

on the probability of A’s beliefs about B: the probability τ of B’s holding of the intention to do an 

action where I is relevant to the preconditions or termination conditions of the action, the 

probability σ of B having a goal (intention that a proposition be true) g, and the probability δ of 

not sending I to B endangers the achievement of goal g. We also assume the probability of 

need(B,I) is independent of the probability of “B believes I (now)”.  
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Figure 2 shows the decision tree for an agent A to decide whether to proactively send information 

I to a teammate B, where rewards and costs are measured with respect to the whole team. There 

are two choices: PI (inform with communication cost Cc) and NPI (not inform, communication 

cost is 0). There are three possible outcomes if agent A chooses PI. The first possible outcome is 

that need(B,I) holds with probability p and B does not believe I with probability q. This is the 

ideal case and the reward to the team is U(I). The second outcome is that need(B,I) holds with 

probability p and B already believes I with probability (1-q). In such a case the reward to the team 

is U(I)-Cm, where Cm is a penalty for sending information that B already knows. The third 

outcome is that B does not need I with probability (1-p); the reward to the team is U(I)-Cn, 

accounting for the penalty of futile communication (mis-coordination). There are also three 

possible outcomes if agent A chooses NPI. The first possible outcome is that need(B,I) holds with 

probability p and B does not believe I with probability q. This is the worst case and the team takes 

the most penalty for mis-coordination, so the reward is U(I)-Cn. The second outcome is that 

need(B,I) holds with probability p and B already believes I with probability (1-q); this is an ideal 

case and the reward to the team is U(I). The third outcome is that B will not need I with 

probability (1-p); the reward to the team is U(I) for frugality in communication. The final choice 

of PI or NPI is based on their expected utility. The expected utility EU(PI) of PI is U(I)-Cm⋅p⋅(1-

q)-Cn⋅(1-p)-Cc, while the expected utility EU(NPI) of NPI is U(I)-Cn⋅ p⋅q. The agent will inform 

I to B iff EU(PI)>EU(NPI), i.e., iff (Cn+Cm)p⋅q-Cm⋅p>Cc+(1-p)Cn. Compared with the 

decision tree given in [37], the tree shown in Figure 2 is more general: the consideration of the 

uncertainty of an event’s threat to a joint intention is just one special case in reasoning about the 

probability of need(B,I).  

 

The costs (Cn, Cm and Cc) are assumed to be domain knowledge, and can be encoded as part of 

the Shared Mental Model maintained by all the agents in a team. To compute the expected 

utilities, we still need to estimate the probabilities p and q. As discussed above, the probabilities 

τ, σ and δ are needed in estimating the probability p of need(B,I). As a first step, CAST agents 

estimate p based on the following criteria: (a) the probability (τ) that B intends to do a certa in 

action is high if according to the SMM agent B is assigned to do the action or is one of a few 

candidates; τ is low if according to the SMM agent B’s workload is high and the number of 

candidate doers of the action is large (e.g., more than 3); (b) the probability σ of B having a goal 

is high if the performance of its current activities will bring B closer to the goal; it is low 

otherwise; (c) the probability (δ) that A not sending I to B will endanger the achievement of a goal 

is high if the goal becomes unattainable  if B lacks I. Obviously, δ is inversely proportional to the 
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number of team members who can sense I; (d) the probability p is proportional to τ, σ and δ, 

which one is used in estimating p depends on the actual situations. 

 

The probability q that B does not believe I is evaluated based on A and B’s observability and the 

dynamics of information I. If A has observed that B is doing another action that also requires I, A 

will assume that B already knows I with a higher probability. If as a prior knowledge A knows B’s 

observability, and from the current context A believes that B could observe I, then A will assume 

B knows I with a higher probability. If I is a static information, and A remembers that itself once 

informed I to B or itself actually got to know I from B before, the probability that B believes I is 

1. In other cases, A will assume the probability that B believes I is very low.  

4.3. Make decisions on fusing information 

The long term goal of CAST is to facilitate the investigation of teamwork problems involving 

human teammates (e.g., a team of homeland security analysts, assisted by CAST agents, 

collaboratively make decisions on the potential threats). It is well understood that human has 

limited cognitive capacity [16].  To enable an CAST agent to support human team members, it 

has to take into its consideration the human recipient’s cognitive load,  and proactively fuse 

information, if necessary, before delivering any information to the human. The decision on 

whether to send multiple lower-level information or fused higher-level information to a teammate 

could be fairly simple: just compare the amount of information to be sent and the reserved 

capacity of the recipient, fuse if the former is larger and not fuse otherwise. The decision could be 

complicated if other factors (e.g., the long term impact of information fusion on the recipient’s 

cognitive capacity) are considered.  

 

In doing this , we first need an appropriate way to represent the inference-level contexts of 

information-needs such that it can facilitate an agent not only to assist teammates even when it 

only has partial information relevant to their needs, also to alleviate teammates’ information 

overload by delivering fused information that is in a form closest to their information-needs. 

Towards these objectives, we transform agents’ inference knowledge (represented as Horn-

clauses in CAST) to hierarchical inference trees.   

 

An inference tree includes two kinds of nodes: “AND” nodes and “OR” nodes. Each “AND” 

node has several “OR” nodes as its sons; while  each “OR” node is labeled with a predicate, and 

may have  several “AND” nodes as its sons. The evaluation of an “AND” node is true iff the 

conjunction of those predicates labeling its son nodes is true; the evaluation of an “OR” node is 



 

15 

 

true iff any of its son nodes is true. Every “AND” node, if it has a parent node, represents one 

piece of inference knowledge (i.e., horn-clause): the truth value of the predicate labeling its 

parent can be inferred from the truth values of the predicates labeling its son nodes. 

 

Take digital battlefield as an example. Suppose the preconditions of plan removeThreat 

has three conjuncts: threat(?e,?loc,?dir,?num), dir(?e,?dir), and canFight(Self), which 

are the head predicate of the horn-clauses in Table 1, respectively. That is, an agent could deduce 

the existence of a threat if it has beliefs about the identified enemy unit (IsEnemy), the location of 

the enemy unit (At), the moving direction of the enemy unit (Dir), and the number of enemies in 

the unit (Number); to deduce the moving direction, the agent needs to know the change of 

location; and to be able to fight, the agent needs to have enough fighting power, and it can move 

to the targets. The inference tree of plan removeThreat is shown in Fig.3. 

 

In an inference-tree, the nodes at the same level collectively form a context for each individual.  

For instance, in  Fig.3, as far as threat identification is concerned, Dir(?e,?dir) is useful only 

when it is evaluated together with IsEnemy(?e), At(?e,?loc,NOW), and Number(?e,?num). 

Thus, these four predicates collectively establish a context for each of the individual predicates.  

 

Given a collection of predicates and related inference knowledge, its inference tree can be 

generated recursively. Here we simply assume the information-needs (pre-conditions and 

termination conditions) associated with each plan involved in the team process are all organized 

as inference trees, and see how inference trees can be used in agent teamwork settings.  

 

First, inference trees can be used in collaborative constraints satisfaction. Suppose agents A1, A2  

and A3 share the inference tree as shown in Fig.3,  and A3 is the doer of plan removeThreat. 

Assume both A1 and A2 have identified an enemy unit (e1) approaching A3, who is unaware of 

the threat from e1. Also assume A1 can only observe the location, At(e1,area_4,NOW), and 

moving direction, Dir(e1,northeast), of e1; A2 can only observe the enemy number, 

Number(e1,100), of unit e1. Obviously, neither A1 nor A2 alone can enable A3 to do 

removeThreat. However, they can collaboratively satisfy A3, because A1 knows 

At(e1,area_4,NOW) and Dir(e1,northeast) will be useful for A3 in the context indicated by the 

dotted circle in Fig.3, and A2 knows  Number(e1,100) will be useful for A3 in the same context.  

 

Another important use of inference trees is that they can be leveraged to maximally assist 

teammates’ information-needs without overloading them. The following algorithm shows how 
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inference trees can be used to fuse lower-level information to satisfy others’ higher-level 

information-needs.  

 
Algorithm 2: info_fusion(ITNode root) 
    doerList = getAssignedDoers(root.plan()) 
    fusionList = null; /*a list of OR nodes*/ 
    if (root is AND node)    
        fusionList.addAll(root.son()); 
    else fusionList.add(root); 
    while  (fusionList is not null) and (doerList is not null)  
        onode = fusionList.removeFirst(); 
        result = agent.check(onode.predicate()); (1) 
        if (result is true) 
            for each doer in doerList                   (2) 
                if ((preferFusion(doer) is true) or 
                    (onode is a leave node)) 
                    agent.proTell(doer, onode.predicate()); 
                    doerList.remove(doer); 
            end {for} 
        end {if} 
        //process lower-level information 
        for each son anode of onode                (3) 
            fusionList.addAll(anode.son()); 
    end {while} 
end. 
 
Every time after an agent senses the environment, it will first check the sub-plans to be done and 

collect the inference trees corresponding to those sub-plans whose pre-conditions or termination 

conditions are related with the new sensed information. The algorithm info_fusion will be 

invoked for each of the collected inference trees. info_fusion first gets all the agents assigned to 

do the sub-plan, then employs a breath-first reasoning. For each OR node in fusionList the agent 

checks whether the associated predicate holds or not through its reasoning engine (clause 1). If it 

holds, for each doer remained in doerList this agent decides, based on doer’s cognitive load, 

whether to inform doer a piece of fused information or multiple pieces of lower-level 

information; if fused information is preferred for doer or the predicate cannot be further 

decomposed, this agent simply delivers the fused information to doer and removes doer from the 

doerList (so that doer will no longer be considered in the successive iterations). Since some 

agents remained in doerList may prefer lower-level information, in clause (3) the next level OR 

nodes are added to the fusionList for further processing. Suppose the team size (the number of 

agents in the team) is n, the number of predicates referred to in Horn-clauses is m (this means an 

inference tree at most has m OR nodes). Then, in the worst case, |doerList|=n and |fusionList|=m, 

the worst case complexity of info_fusion is O(n⋅m). 
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The algorithm info_fusion enables CAST agents to support the reasoning of information-needs at 

multiple levels. Note that info_fusion is different from the DIARG algorithm in [43] . DIARG 

considers each newly sensed information separately, while info_fusion considers all the new 

information together as long as they are related (i.e., by certain horn-clauses). Information-fusion 

can also be carried out by depth-first reasoning. One difference is that breath-first algorithm 

guarantees that the higher-level information will always be delivered with higher priorities than 

the lower-level information. This is critical in case that the information consumers are human, 

who only have limited cognitive capacity [16]. 

5. Experiments  

To evaluate the impacts of the SMM-supported decision-makings on agent team performance, we 

conducted two simulation experiments.  The objective of the first experiment is to evaluate how 

CAST’s decision-theoretic approach to proactive communications affects the performance of the 

team, while the objective of the second experiment is to evaluate how information fusion may 

improve team performance in terms of the correctness of tactical decision makings when the 

decision-maker’s cognitive capacity is under consideration. Both experiments are carried out in a 

simulated battlefield , where two opposing agent teams, a friendly team (blue) and an enemy team 

(red), navigating in the combat field to achieve certain team goals. The agent teams are designed 

based on four criteria: (1) members of the team have limited and different observability, (2) the 

team needs to act under critical time constraints, (3) communication cost is not negligible, and (4) 

the team has a well-defined structure and process. For simplicity, we ignore the need for agents to 

maintain the security of combat accomplishments (e.g., ground gained).  

5.1. Experiment I: The Decision Theoretic Communication Strategy 

5.1.1. Scenario and Experiment Design 
In the first experiment, the blue team adopts an offensive strategy: the team goal is to destroy the 

homebase of the red team, while the red team tries to protect their base by attacking any 

approaching blue agents. The red team involves three types of agents: one agent protecting a 

waypoint on the blue team’s attack trajectory, one agent protecting the homebase, and other 

agents patrol around the homebase.  Each agent in the red team has a sensing range. When a red 

agent detects a blue agent, it will move toward and attack the blue agent. To ensure that the 

communication cost is not negligible, we designed the scenario to introduce a risk factor into an 

agent’s communication: a blue agent’s location can be detected by the enemy base if the agent 

communicates with its teammates within the “detection ring” of the enemy base.  Once 

perceiving the location of a blue agent, the enemy base will inform this information to a red team 

agent who is the closest to the intruder (for initial assignment) or to a red team agent who has 
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been previously assigned to the intruder (for tracking and attacking). The red agents act 

independently and there is no communication among them, because they do not have a shared 

mental model.  

 

The blue team is formed by agents with three different roles: the scout, who can sense (the 

sensing range is further than that of red agents) but can not shoot; the fighter, who can shoot but 

can not sense; and the bomber, who can only bomb the enemy base.  To complete the mission, at 

least two bombers have to surround the enemy base and perform a joint­action called co­fire at 

the enemy base. The behavior of the blue team is governed by team plans and individual plans 

specified in MALLET, along with other related domain knowledge. The team will coordinate 

their movement toward a series of waypoints which ultimately leads to the enemy base. More 

specifically, being informed of the location of the enemy base, the bombers will move toward the 

enemy base and try to synchronize co­fire actions to complete the mission, while the unassigned 

fighters will also move toward the enemy base to protect bombers whenever needed. When 

informed of the location of an approaching red agent, a dynamically assigned fighter (based on 

the team’s SMM about the constraints of the assignment and workload) will move toward and 

attack the red agent. Meanwhile, if a bomber gets such information it will try to move away from 

the red agent to avoid threat.  

 

In this experiment, we designed two communication strategies for the blue team to evaluate the 

effectiveness of the decision-theoretic approach for communication. The two strategies differ in 

how they handle the communication decisions on whether to proactively inform bombers and 

fighters about red agents’ location. Scout agent using strategy S1 always informs the closest 

bomber about the detected red agents so that the bomber can escape; and always informs fighters 

about red agents’ location so that the fighters can move toward and attack the enemies. Scout 

agent using strategy S2 (which adopts a decision­theoretic approach presented in Section 4.2) will 

choose whether to inform teammates about the detected red agents based on expected utilities: it 

will help teammates only when the expected utility for communicating exceeds the expected 

utility of not communicating.  

 

We use the number of enemy units as the control variable, which indicates the level of domain 

complexity. The more enemy units protecting the waypoint and the homebase, the more difficult 

for the blue team to succeed. The number of enemy units ranges from 1 to 6. In case that a 

configuration has two enemy units, they patrol around the enemy base and the waypoint 

respectively. In case that a configuration only has one enemy unit, the enemy simply patrols 
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around the enemy base.  For each fixed number of enemy units, we generated 40 configurations 

by randomly assigning initial positions for the blue and red agents.   

5.1.2. Result Analysis  
Fig. 4(a) summarizes the number of successfully completed missions (out of a total of 40 

missions) for the blue team using the two communication strategies, which shows strategy S2 

outperformed strategy S1.  The performance difference between the strategies was more 

significant when the number of enemy units increased.  These experimental results suggests that 

the decision­theoretic communication strategies can be effective for team­based agents to decide 

on whether to proactively deliver needed information to teammates in the circumstances that 

communications carry a cost. To gain a better insight about the results, Fig. 4(b-d) show the 

average number of blue team agents, blue team scout agents, and enemy unit agents that survived. 

While the two strategies resulted in slight difference on the number of survived blue team agents, 

they differ significantly on protecting the scout agent.  In fact, the decision-theoretic 

communication strategy (S2) was able to maintain the survival rate of scout as the number of 

enemy units increased, as shown in Fig. 4(c).  In contrast, the survival rate of scout agent 

decreased rapidly under the alternative communication strategy (S1). These observations 

suggested that considering the risk factor of agent communications help protect the scout agent, 

which contributes to higher chance of mission success.   

5.2. Experiment II: The Effect of Information Fusion on Decision Making Tasks 

The purpose of this experiment is to understand how significant information fusion is to team 

performance, especially to the accuracy of decision-making tasks, when the information 

consumer only has limited cognitive (information processing) capacity. The long-term goal of 

this study is to explore solutions to the dilemma emerging in homeland security and BattleSpace 

InfoSphere: decision makers can make better decisions if more relevant information is available, 

while they can be easily overloaded with overwhelming amount of information.  

5.2.1. Scenario and Experiment Design 
In this experiment, the blue team adopts a defensive strategy.  The scenario is as shown in Fig. 5, 

where the blue force is trying to prevent assault from the red force. Collaborating for the blue side 

are three battle functional areas (BFAs): the intelligence cell (S2), the operations cell (S3), and 

the logistics cell (S4).  For the purpose of this scenario the goals and priorities of the BFAs have 

been simplified and defined as follows: 

• S2 has as its objective the assessment of all enemy locations, actions and intent. 

• S3 has as its objective the defeat of the enemy and protection of the supply routes. 

• S4 has as its objective the identification of supply routes and sustainment of supplies. 
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The scenario is marked by 5 events.  

• Event 1: the S2 being alerted to message traffic indicating hostile events occurring 

around H2 airport where it is believed a neutral indigenous force is located.  Noteworthy 

is the fact that H2 airport is not only a critical supply air avenue, but is within 10 

kilometers of the major supply route (MSR).  

• Event 2: the S4 informing the S2 that some of its forces have come under fire near the H2 

airport.   

• Event 3: the S2 (prompted by the objective to monitor enemy location and intent) 

assigning an unmanned aerial reconnaissance vehicles (UAV) to scout the H2 area for 

clarification.   

• Event 4: the UAV confirming through automatic target recognition software the existence 

of enemy tanks in the vicinity of H2; confirming the belief that the once neutral force is 

now with the opposition. 

• Event 5: utilizing teaming agents and the underlying shared mental model of each of the 

BFAs objectives, software agents alert each of the BFAs to the current operational picture 

and advise on possible courses of actions.  Noteworthy are the alerts to the S3. Knowing 

the objectives and priority associated with the S4, the S3-agents are able to anticipate the 

importance of the situation and take appropriate action. 

 

In this set of experiments we suppose each of S2, S3 and S4 in blue teams are assisted by a CAST 

agent. The members of the red team are randomly launched and moving nearby the main supply 

route to introduce potential threats to blue teams. Two blue teams are designed: a fusion team and 

a non-fusion team. In the fusion team, S2’s agent uses inference trees to fuse the information 

collected by UAVs and other BFAs into higher-level information, and send the fused information 

to S3’s agent (who helps S3 in making decisions). In the non-fusion team, S2’s agent simply 

forwards the relevant information collected by UAVs to S3’s agent. Thus, S3 himself has to take 

some effort in processing the lower-level information before making decisions. At each time step 

S3 needs to make decisions on whether to fire at the approaching enemies based on the available 

information and whether the enemies introduce a high-threat to the main supply route. To 

simulate the behavior of logistics, S4 (through his agent) controls an asset which carries supplies 

and moves along the main supply route. S4’s agent changes the supply route whenever a threat 

comes. The blue team wins as long as the asset controlled by S4’s agent arrives at the pre-

specified target.  

 



 

21 

 

The following gives a slice of the teamwork knowledge (described in MALLET) shared by the 

agents in blue teams.  

 
(team BlueTeam (S2 S3 S4)) 
(agent S2) 
(agent S3) 
(agent S4) 
(plays-role S2  (intelligence)) 
(plays-role S3  (operations)) 
(plays-role S4  (logistics)) 
… 
(plan handle_route_threat (?t) 
(pre-condition (major_supply_route ?r) 
        (threat_on_route ?t ?r)) 
(process 
(if (cond  
   (cost_of_adjusting_route ?r  low)  
   (cost_of_removing_threat ?t high) ) 
     (DO (S3 S4) (adjust_logistic_route ?r)))  
(if (cond  
   (cost_of_adjusting_route ?r high)  
    (cost_of_removing_threat ?t low) ) 
       (DO S3 (remove_threat ?t)) ) 
… 
)) 
 
For the first set of experiments, we manipulate the cognitive capacity of S3 for both blue teams to 

examine its effects on final team performance and the decision accuracy. For simplicity, we 

simulate the cognitive capacity as a limited memory queue. Being overloaded means the agent 

cannot handle the information beyond its limited memory queue. We distinguish four levels of 

capacity ranging from “very low”, “low”, “medium” to “high”. We launched 400 runs for each 

blue team. In each run, the number of enemy units and their routes are randomly configured. Each 

point in Fig. 6(a-b) corresponds to the accumulated results out of 100 runs; 20 runs for each fixed 

number of enemy units (ranging from 3 to 7). Fig. 6(a) shows the number of successful missions, 

and Fig. b(b) shows the decision accuracy computed by (the number of correct decisions)/(total 

decisions). S3’s decision is correct if it is the same as the decision computed by world simulator 

(which has complete information).  

 

For the second set of experiments, along the dimension of domain complexity, the number of 

enemy units is varied. We launched 400 runs for each blue team using the number of enemy units 

as control variable (from 3 to 7). Each point in Fig. 6(c) and Fig. 6(d) corresponds to the 

accumulated results out of 80 runs, where Fig. 6(c) shows the number of successful missions, and 

Fig. b(d) shows the decision accuracy. 
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5.2.2. Result Analysis  
According to Fig. 6(a), the fusion team in general outperformed the non-fusion team. 

Additionally, the performance difference between the fusion team and non-fusion team increased 

as S3’s cognitive capacity decreased. From these results we may conclude that information fusion 

capability can be a very important factor of team performance when the information consumer 

has poor cognitive capacity. The same results are true when the decision accuracy is compared, as 

shown in Fig.6(b). Further, in Fig. 6(b) the decision accuracy of the non-fusion team increased as 

S3’ cognitive level increased, while there is no such trend for the fusion team. This may suggest 

the decision accuracy of the non-fusion team is more sensitive to cognitive level changes. 

When the number of enemy units acts as control variable, the fusion team also outperformed the 

non-fusion team in general, as shown in Fig. 6(c) and Fig.6(d). The performance and decision 

accuracy of both teams decreased as domain complexity increased. However, the gap in team 

performance and decision accuracy between the two teams became bigger as the number of 

enemy units increased. These results may indicate that the benefits of fusing information become 

stronger as the domain complexity goes up. 

6. Discussion 

First, the design of CAST aims at teams with four characteristics: (1) team members have limited 

and different observability; (2) the team needs to act (e.g., make decisions) under critical time 

constraints; (3) communication costs are non-negligible; and (4) the team has a well-defined 

structure and process. These four characteristics are common for many teamwork problems in the 

real world. For instance, in a naval command and control scenario there are four human officers 

commanding Carrier, AWACS, Cruiser, and Coastal Air Defense, respectively. They mutually 

know each other’s role, distinct expertise, and the process they have to follow to make team 

decisions on how to respond to incoming threats [16]. Similarly , a team of anti-terrorism analysts 

needs to filter, analyze, and fuse overwhelming amount of information from a wide variety of 

information sources (e.g., satellite images, intelligence reports, radio transmissions, etc.).  Each 

member of these teams can only access a portion of the information accessible to the team, need 

to make decisions under time pressures, and need to communicate with teammates under resource 

constraints and/or risks. Teamwork process exhibits itself as collaborative workflows among law 

enforcement agencies [46], and operational orders (plans) in military.  

 

However, well-defined structure and process does not imply that the structure and process are 

static . They can adapt to dynamic changes in the environment, as long as such changes are 

mutually known afterward. Suppose an intelligence cell (S2 officer), an operations cell (S3 

officer), and a logistics cell (S4 officer) are involved in a real-world combat and are following a 
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team process where they iteratively carry out a sequence of operations: gather-info(); measure-

threat(); handle -threat(). Their role in this process is: S2 gathers threat information, S3 needs to 

measure the level of a threat and all need to react to the threat in handle -threat(). Suppose 

currently the sub-process handle-threat() specifies how S2, S3 and S4 should collaboratively 

remove the incoming threat from the supply route. As time passes, it turns out that the threat 

cannot be easily removed, then handle -threat() needs to be re-adjusted to deal with such a 

situation (e.g., change the main supply route and make this mutually known). The team needs to 

be re-structured when a new S2 officer joins the commanding team. 

 

The vision of our research is to empower a team of agents with a computational shared mental 

model so that they can anticipate needs of teammates and assist them proactively. This vision is 

not only inspired by psychological studies about human teamwork, but also inspired by growing 

needs to support mixed human/agent teams in handling overwhelming amount of information 

under time pressure. Under this vision, CAST is designed with the support of mixed human/agent 

teams in mind. Due to complexity, we choose to fulfill this vision in two steps. In the first step, 

team members are pure CAST agents. The CAST agents can serve as assistants to people; in such 

case people are treated as virtual team members and are invisible to other CAST agents.  In this 

setting, people can share his/her mental models (e.g., goals, interests, human-like decision-

making process, etc.) with the assisting agent through an interface. In addition, people can affect 

the on-going team activities by adjusting the assisting agent’s behavior or strategies. As far as 

decision-making is concerned, having a better sense of the global picture, people can provide 

their expertise to support the team of agents to make better decisions. On the other hand, an 

assisting agent can help its user in making better decisions by collaborating with other agents to 

gather relevant information from distributed intelligence sources. For instance, COPLINK agent 

provides a Web-based user interface to facilitate the sharing of information in law enforcement 

among different users [45]. The CAST approach can be applied to the similar scenario, due to the 

proactive information delivery capability offered by CAST agents. Among others, one of the 

differences between CAST and COPLINK is that in the CAST approach the collaboration logic is 

distributed among multiple team agents, which may have access to different intelligence or 

security sources. The experiments reported in this paper demonstrated our attempt in this first 

step.  

 

In the second step, a team may have human team members, as well as CAST agents. In this 

setting, we can still assume each human team member has an assisting agent, but it’s the assisting 

agent rather than the human that is invisible to the other team members.  An assisting agent can 
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help in filtering and fusing information that its user receives from other members, in tracking the 

individual mental model of its user and the mental models being shared among the team, and in 

forwarding the information to appropriate recipients that its user intends to send. One of our on-

going projects is to allow CAST agents and human members to form a decision-making team to 

respond to incoming threats in the DDD domain [31]. One goal of this project is to investigate 

how CAST agents can help train human to enhance their teamwork skills. 

 

While the scenarios used in this paper are typical in the NCW domain [1], we would like to use a 

scenario described in [46]to illustrate explicitly how a team of CAST agents could support a team 

of people to accomplish a time critical task related to homeland security. Suppose a report of an 

explosion at a chemical plant is received by a homeland security (HLS) analyst, local firefighters 

and state police. The assistant agent (AA) for the analyst “reads” the report and immediately 

retrieves information about what chemicals exist in the plant and a map of nearby dangerous and 

vulnerable facilities. The firefighters arrive on the scene and identify the sector of the plant where 

flames and smoke are emanating from. A state police is informed of a suspicious individual in the 

parking lot. He enters the license plate of a suspicious car in the parking lot and the analyst AA 

immediately searches for aliases of the owner and links to terrorist organizations. A link is found 

and the HLS analyst’s AA searches for an AA of an expert on that terrorist group. The terrorist 

expert AA notifies the HLS AA that an associate of the suspicious person is a chemical engineer 

that works in a nearby plant where another explosion has just been reported. The HLS AA 

discovers that if the two smoke plumes intersect it will create a deadly acid mist. The AA plots 

the smoke plumes on the map and notifies the HLS analyst that the combined plume will reach a 

large stadium with an ongoing football game in 15 minutes. The AA immediately initiates a 

phone call between the HLS analyst and stadium security. In this scenario all the AAs can be 

played by CAST agents. The workflow among these AAs is a typical teamwork process. It can be 

shared so that the AAs could better anticipate and help each other’s information needs, and make 

better decisions in such a highly dynamic situation.  

 

Agent-aided collaborative decision-making has been investigated extensively in the literature 

[24][4][27]. The decision-making approach implemented in CAST is different from the existing 

work in several aspects. First, the decision-making is based on the common understanding of the 

team process and team progress. Such a shared mental model and the proactive information 

exchanges elicited from the shared mental model enable CAST agents to make better decisions in 

a dynamic environment. Second, CAST agents are able to make three kinds of decisions: (1) 

decide on the next course of actions when facing a choice point; (2) decide whether to inform 
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others when obtaining a new piece of information; (3) decide whether to do information fusion 

when the recipient’s cognitive capacity is considered. While STEAM [37]employed a theoretic 

approach similar to CAST in deciding on inter-agent communication, it does not allow agents to 

make the first and the third kinds of decisions. Third, our approach centers on proactive 

information gathering before making a decision. In [32] a collaborative decision-making 

framework is proposed to address the homeland security problem. However, it mainly focuses on 

the argumentation process where decision makers challenge each other when conflict occurs.  

7. Conclusion 

Due to the rapid advancement of information technologies, the amount of information that needs 

to be analyzed, interpreted, shared, and fused by a team has been increasing at a speed never seen 

in human history.  This trend has begun to raise the challenges of information sharing, 

collaboration, decision support for teams to a new level.  Empowering software agents with a 

better understanding about the behavior of team members (including humans) can become 

increasingly important for developing solutions to addressing these challenges in areas ranging 

from digital force to collaborative intelligence analysis. 

 

This paper focused on the cognitive construct “shared mental model”, and explored how the 

SMM implemented in CAST can support teams of agents in their decision-making tasks. More 

specifically, we extended CAST with a decision-making module, which allows CAST agents to 

make decisions on the next course of actions when facing a choice point; on whether to inform 

others when obtaining a new piece of information; and on whether to fuse information before 

delivery when the recipient’s cognitive capacity is considered. SMM is critical in making all of 

these kinds of decisions.  

 

We evaluated the impacts of the SMM-supported decision-makings on the performance of agent 

teams through two experiments in a simulated NCW environment. The results of both 

experiments are positive, which indicates the implemented decision-making approaches can be 

effective in improving team performance. While this is still far from conclusive, from here we 

can gain some insights on the use of SMM in supporting decision-making teams composed of 

software agents; this provides us a stepstone for further exploring the SMM approach in 

supporting mixed human/agent teams in their collaborative problem solving. 
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Fig.4 Results of experiment I 
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Fig. 5 The Sample Military Scenario Map 

 

 

Fig.6 Results of experiment II 

 

 

 
Table 1. Example Inference knowledge in CAST 
(1) Threat(?e,?loc,?dir,?num)←IsEnemy(?e), 

At(?e,?loc,NOW),Dir(?e,?dir),Number(?e,?num) 
(2) Dir(?e,?dir)←At(?e,?l1,NOW-1), 

At(?e,?l2,NOW),Compass(?l1,?l2,?dir) 
(3) CanFight(Self)←HaveFP(Self),CanMove(Self) 
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