
Implementing Shared Mental Models for Collaborative Teamwork

John Yen, Xiaocong Fan, Shuang Sun, Rui Wang, Cong Chen, Kaivan Kamali
School of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802

jyen@ist.psu.edu, zfan@ist.psu.edu

Richard A. Volz
Department of Computer Science

Texas A&M University
College Station, TX 77843

volz@cs.tamu.edu

Abstract

Psychology studies have shown that one of the keys to
human teamwork is the ability of teammates to anticipate
the needs of others and proactively take appropriate ac-
tion using an overlapping shared mental model (SMM).
This paper introduces an implemented multi-agent archi-
tecture – CAST, which enables a team of agents to estab-
lish a computational shared mental model. Using such a
SMM, agents can (1) anticipate others’ information needs,
(2) perform dynamic task allocations with minimum inter-
agent negotiation, (3) choose whether to proactively inform
teammates about the information relevant to their needs,
and (4) rationally fuse information to meet teammates’ dif-
ferent levels of information needs. We evaluate our ap-
proach through two experiments in simulated battlefield do-
mains. The studies show the vision of empowering agents
with SMMs for proactive teamwork behaviors is both chal-
lenging and promising, which can benefit the development
of agent-based solutions for training and supporting mixed
human-agent teams that need to filter and fuse an over-
whelming amount of information, and to make critical deci-
sions under time constraints.

1 Introduction

Shared mental models are thought to be an important
aspect of teamwork among human teams. The notion of
shared mental models is a hypothetical construct that has
been put forward to explain certain coordinated behaviors of
teams, based on a number of studies by cognitive psychol-

ogists [4, 5]. Basically, a shared mental model represents
each team member’s model of the global team state. This
representation produces a mutual awareness, with which
team members can reason not only about their own situa-
tion, but the status and activities of the other members of
the team and progress of the team toward its goal.

The scope of a shared mental model is rather broad.
Most collaborating agents haveshared goals, either explic-
itly or implicitly. In traditional client/server distributed sys-
tems, the clients implicitly have a shared understanding
about the server’s goal to provide certain services to the
clients. Because these goals do not change, they are embed-
ded in the codes of the server. Software agents, on the other
hand, often have their shared goals explicitly represented,
so that they can adapt their goals to a dynamic environ-
ment. Joint intention theory formally defines the meaning
and implications for multiple agents to commit to a shared
goal (i.e., joint intention) [6]. The theory requires a team
of agents with a joint intention to not only each try to do
its part in achieving the shared goal, but also commit to in-
forming others when the agent detects that the goal has been
accomplished, becomes impossible to achieve, or becomes
irrelevant. From the viewpoint of SMM, this means that
agents are committed to maintaining a shared mental model
about the status of the shared goal.

A shared understanding about team structure (e.g., dif-
ferent roles in a team) enables an agent in the team to de-
velop a higher level abstraction about capabilities, expertise,
and responsibilities of other team members. Shared knowl-
edge about the process of a team provides a roadmap/recipe
about how the team plans to accomplish its goal. In mil-
itary, for instance, such a team collaboration process of a
particular echelon unit (e.g., a battalion) is specified in its

“operational order”. A teamwork process specifies not only
“what should be done”, but also specifies constraints on
“who should do what”.Shared team structureandshared
team processtogether are essential for an agent to reason
about the allocation of tasks among team members, and to
collaborate smoothly as a team. An approach related to
shared team process is the SharedPlan theory [8, 9], which
is a formal framework for a group of agents to synthesize
their full shared plan from partial ones.

In addition, a SMM may also include shared ontology,
shared domain knowledge, etc. These elements are typi-
cally implicit in human teams. For instance, effective hu-
man teams usually have implicit ontology in mind in their
communication.

The vision of our research is to empower agents with
computational shared mental models (SMM) for enhancing
their proactive teamwork behaviors. This is desirable when
studying teamwork issues in mixed human-agent teams, be-
cause it will provide a computational support for mutual
modeling between human and software agents. On the other
hand, the vision is also highly challenging due to the broad
scope of shared mental models and the complexity in im-
plementing this cognitive construct.

To tackle the challenges, we have focused on a compo-
nent of SMM – shared team process (and related team struc-
ture). In doing this, we implemented a multi-agent architec-
ture – CAST (Collaborative Agent architecture for Simulat-
ing Teamwork), which enables a team of agents to estab-
lish a computational shared mental model using knowledge
about the structure and the process of the team. This com-
putational representation of SMM plays a critical role in al-
lowing CAST to find a desired balance between achieving
efficiency and maintaining adaptability in teamwork model-
ing. Using such SMM, agents can (1) anticipate information
needs of teammates, (2) perform dynamic task allocations
with minimum inter-agent negotiation, (3) choose whether
to proactively inform teammates about the information rel-
evant to their needs, and (4) rationally fuse information to
meet teammates’ different levels of information needs.

This paper introduces the SMM implemented in CAST
and discusses how it can be used in several aspects to
achieve effective teamwork. The rest of this paper is or-
ganized as follows. In the next sub-section we give the
background of studies regarding shared mental models in
human teams. Section 2 introduces the key features of the
CAST agent architecture, and section 3 focuses on the com-
putational shared mental model implemented in CAST. We
describe the composition of the SMM, and discuss how the
SMM is used in making decisions on whether to inform oth-
ers, and how the SMM is used in fusing information. These
two uses of SMM are evaluated through simulated experi-
ments in section 4. Ongoing attempts of using the SMM in
mixed human-agent teams are briefly discussed in section 5

and section 6 concludes the paper.

1.1 Studies about Shared Mental Models

Shared mental models extend the notion of individual
mental models to a team context. An individual men-
tal model about individual activities empowers the agent
with “know-how” under different situations. Likewise, a
shared mental model about team process can force the con-
sequences of a situation to be worked out and realized, and
allow predictions to be made, which can be very useful for
anticipating what is likely to happen in the future.

Shared mental models are the key to supporting many
interactions within a team that lead to its effectiveness and
efficiency. For example, although communication is impor-
tant to teamwork, Orasanu [12] found the counter-intuitive
result that the higher-performing teams actually communi-
cate less in high-tempo (or high workload) scenarios, which
was attributed to greater implicit coordination made pos-
sible through enhanced shared mental models. Similarly,
shared mental models are needed for proactive helping be-
haviors [13], where team members with less load offer to
help members over-loaded with more tasks than they can
handle, which again relies significantly on maintaining mu-
tual awareness. The point is that team members have to
have a model of what each other is doing in order to effec-
tively collaborate, find synergies, avoid interference, assess
relevance of information, etc.

Due to the importance of shared mental models to team-
work, fostering the development of shared mental models
has been the target of several team training efforts. Most
work on team training begins with (or relies on) identify-
ing a method for assessment. Shared mental models can be
measured in terms of the degree of overlap or consistency
among team members’ knowledge and beliefs [5]. Meth-
ods to increase the overlap of dynamic information (e.g.
about situation, workload, etc.) include encouraging fre-
quent communication of individual updates during a sce-
nario to keep other members of the team informed when-
ever inconsistencies or changes occur. A popular method
aimed at increasing the overlap of static knowledge (e.g. of
roles and responsibilities) is cross-training [1, 3, 16].

2 The CAST Agent Architecture

CAST (Collaborative Agent architecture for Simulat-
ing Teamwork) is a teamwork model that enables agents,
whether they are software agents or human agents, to antic-
ipate potential information needs among teammates, and to
exchange information proactively [20]. It has been designed
to study teamwork-related issues emerging from hierarchi-
cal teams with well-defined process, distributed expertise,
and limited communication in time-stress domains.

Process

Tracking

Decision

 making

Shared

Mental Model

Individual

Mental Model

Proactive

Communication

Reasoning

Engine

CAST Kernel

Figure 1. The CAST Agent Architecture

In the CAST agent architecture as shown in Fig.1, there
are mainly five integrated components related to the Rea-
soning Engine: Shared Mental Model, Individual mental
model, process tracking, proactive communication, and de-
cision making. Briefly, the Reasoning Engine, based on
the current shared and/or individual mental states, trig-
gers appropriate algorithms in CAST kernel to monitor the
progress of team activities, do dynamic agent assignment,
anticipate others’ information needs, make decisions on
proactive communication actions, and fuse information to
meet higher-level information needs, etc. The execution of
these mental actions will reversely affect the evolution of
the shared and individual mental states.

The Shared Mental Modelcomponent involves all the
knowledge and information that are shared by team mem-
bers, and all those of which the team members should com-
mit to the shared awareness. We will discuss this compo-
nent in the next section.

Contrary to SMM,individual mental modelsdeal with
those mental attitudes held by individual agents rather than
all team members. It is continuously updated by sensor
inputs and communication messages received from other
agents. Theorem-prover JARE (Java Automated Reason-
ing Engine) [11] is used by each individual agent to man-
age beliefs about the dynamic world; test constraints, an-
swer queries and make inferences using the belief base
and domain-dependent Horn-clauses. An agent’s individual
mental model may also include its model of other’s men-
tal state, i.e., nested mental models. CAST supports be-
lief reasoning regarding other teammates through reason-
ing about their observability, or inferring from the effects
of the actions already completed, as long as the knowl-
edge about observability and action effects are part of the
shared mental model. This is especially important in en-
abling CAST agents to anticipate other teammates’ infor-
mation needs, and it highly impacts the information ex-
changes among team members. For instance, suppose agent
A can observe an enemy if the enemy is within his sensing

range (in general, to determine observability can be more
complicated than only considering the distance to the tar-
get. Weather and terrain, for instance, may also affect ob-
servability). Given information about the location ofA and
an enemy, a teammate ofA can infer whetherA can observe
the enemy based on the knowledge aboutA’s sensing range.
The teammate may choose to inform the enemy information
to A proactively if he infers thatA cannot observe it.

The Process Trackingmodule encapsulates two algo-
rithms: PrT-Interpreter and Dynamic-Agent-Assignment
(DAA). The former algorithm is used for interpreting (ma-
nipulating) the team process so that all the team mem-
bers could coordinate their behavior to embody the spec-
ified team behavior. In CAST, team processes are origi-
nally coded in MALLET (Multi-Agent Logic-based Lan-
guage for Encoding Teamwork), a logic-based language for
specifying the structures and processes of agent teams [19].
To facilitate dynamic reasoning and monitoring, team pro-
cesses are internally represented as PrT nets, which are gen-
erated offline by MALLET Parser. One of the tasks of PrT-
Interpreter is to ensure all the team members behave, re-
act, and deliberate strictly according to the committed (in-
tended) plans (courses of actions), and synchronize their
behaviors whenever necessary (i.e., maintain their shared
mental model regarding the progress of team activity).

Initially, a team plan is only partially instantiated, though
fully represented in a PrT net. TheDAAalgorithm is respon-
sible for initiating appropriate communication actions at the
appropriate time to evolve these partial plans, i.e., determine
parameters such as the actual doers of certain actions. DAA
first determines the current goal and finds an appropriate
plan for it. Each partial plan specifies constraint conditions
on how to allocate the embedded unresolved tasks. Such
conditions may include role constraints, workload condi-
tions, or domain related conditions. Before executing a task,
each agent will check these constraints with its current be-
liefs about the domain or teammates and determine the suit-
able agents whose conditions satisfy the constraints. Every
call of the DAA wrt. a certain plan will result in a “who-do-
what” list, which will be further used to update the SMM
regarding others’ information needs.

One algorithm in theproactive communicationmodule
is called DIARG (Dynamic Inter-Agent Rule Generator),
which is the most crucial part of CAST in terms of achiev-
ing the proactive assistance behavior in team environment.
It is used to anticipate teammates’ information needs and
update information flow relationships dynamically. The
foundation of DIARG algorithm has been established by
extending the SharedPlan theory with the formal semantics
of proactive communicative actions [17, 18]. It has been
shown that an agent’s consideration of proactive assist be-
haviors can be derived from axioms in the formal frame-
work. A team’s SMM about the information needs of its

topplan

p1
 p2
 p3

p4
 p5
 p6
 p7
 p8

p9
 p10
 p11
 p12
 p13
 p14
 p15
 p16

p17

p18

Current Plan Node

Nodes under concern

Nodes in the trace

p19
 p20
 p21
 p22
 p23

sub-plan

next sibling plan

Nodes not under concern

Fig.2
 The Information Needs Graph--An Example

members is captured in the framework by a modal operator
InfoNeed(A, I, t, Cn), which says that agentA needs in-
formationI at timet under the contextCn. In CAST, this
part of SMM is implemented asInformation Needs Graphs
(see Fig. 2 for an example), which can be manipulated dy-
namically to reflect the most updated information needs re-
lationships among the team.

Information Needs Graphs (abbreviated as ING) are gen-
erated at compile time by analyzing the input team process
specified in MALLET. In an ING, nodes are labeled with
names of plans or primitive actions referred to directly or
indirectly by the plan labeling the root node. There are two
kinds of relations among the nodes. Asub-relation(e.g., be-
tween nodesp1 andp4) refers to the direct sub-plan relation
in the process specification (e.g., planp4 is directly referred
to by planp1). A sibling-relation(e.g., between nodesp1
andp2) refers to the implicit execution sequence embodied
by the process specification (e.g., planp2 will be executed
next when planp1 is done). Each node also records the po-
tential doers of the plan and the pre-requisite information
of performing the plan (the pre-requisite information can be
structured in certain ways. See Section 3.2 for detail).

The INGs can be used to better anticipate others’ infor-
mation needs. For the example in Fig.2,p19 is the current
plan node, which means the corresponding agents are exe-
cuting planp19. If the team activities are synchronized, the
doers ofp19 can assume all those information required for
plansp6, p7, p16, p17, andp18 are no longer needed, since
they have already been completed. Such dynamic antici-
pation can significantly reduce unnecessary information de-
livery as team activities proceed. Even though agents may
not act in the same tempo, an agent may be able to predict
(recognize) others’ current plans based on their observable
behaviors. Then, the INGs can still be leveraged to improve
the accuracy in anticipating others’ information needs.

The DIARG monitors information newly sensed by an
agent to determine whether it matches the information
needs of some teammates. If there is a match, by default the
agent will send out the new information to the correspond-
ing needers proactively. Such information delivery behavior
could be more rational when considering the cost and ben-
efits from the perspective of the whole team. To do so, this
module needs to interact with the decision making module.

The decision making module currently consists of two
algorithms enabling agents to: (1) decide on the course
of actions (COA) by using designated decision maker, and
(2) decide whether to send out information proactively
(ProInform). The latter will be explained in Section 3.1.

3 The Computational SMM in CAST

Shared mental models typically consist of a wide array
of types of information [15], some static and some dynamic.
Static information includes knowledge about the structure
of the team (who is playing what role), the nature of the
roles (i.e. responsibilities), capabilities possessed by team
members or required by roles, the team goals (e.g. mis-
sions), the selected plan for achieving a goal, communica-
tion policies, etc. Dynamic information includes more tran-
sient aspects, which might change throughout the course of
the scenario, such as workload, current task assignments,
status of tasks (pending, blocked, completed), and overall
progress of the team process toward its goal.

As shown in Fig.3, the Shared Mental Model imple-
mented in CAST has four components: team process,
team structure, domain knowledge, and information needs
graphs. Theteam processcomponent can be further split
into static part and dynamic part. The static part is a col-
lection of plans represented as PrT nets, which describe
how the team is to accomplish its goals. These plans are

Fig. 3 The Composition of Shared Mental Model

Team Process

team plans as
 PrT
 nets

current token configuration

Static:

Dynamic:

Domain Knowledge

agents'
 observability

domain inference rules

communication protocol

Information Needs Graphs

p5

p12
 p13
 p14
 p15

p1

p4

p9
 p10
 p11

Team structure

roles needed in a team

agents in a team

roles an agent can play

more like incomplete recipes in the SharedPlan theory, since
agent task allocation needs to be done dynamically be-
fore the plans can be executed collaboratively. The dy-
namic part is a collection of token configurations, each of
which tracks the current progress of the corresponding plan.
The team structurecomponent captures those knowledge
specifying roles in the team, agents in the team, and the
roles each agent can play. Thedomain knowledgecom-
ponent describes domain-dependent static common knowl-
edge shared by all the team members, such as each agent’s
observability (used to approximate nested beliefs), commu-
nication protocols, inference rules, domain expertise, etc.
Theinformation needs graphscomponent maintains the dy-
namic information needs relationships (i.e., make sure the
information needs reflect the current status of team activ-
ities). The manipulating of information needs graphs re-
quires the meta-information provided by the other three
components.

The information needs in CAST can be classified into
three categories. First, CAST is implemented such that
each team member is committed to letting others know its
progress in the current team process. Such communication
for synchronization purpose is motivated by thebuilt-in in-
formation needs: each agent needs to know others progress
in order to maintain the SMM regarding team process (i.e.,
the dynamic part). These built-in information needs are cru-
cial to achieve teamwork in CAST: on the one hand, they are
part of the shared mental model; on the other hand, they are
used to maintain the other part of the shared mental model.
Second, by parsing the MALLET specification, CAST can
construct incomplete information needs graphs from team
processes at compile time. These information needs em-
bedded in INGs are calledpre-computedneeds. Third, the
pre-computed information needs can be furtherrefinedat
execution time as the team do dynamic agent assignments.

The major difference between mutual beliefs (MB) and

SMM is that the MB construct emphasizes recursive nested
awareness of certain facts, while SMM emphasizes more
on thestrong commitmentfrom the involved agents towards
maintaining certain shared awareness. In other words, hav-
ing a shared mental model, all the agents are committed to
eliminating any differences that may emerge at any time.
For instance, when an agent finishes its task, the agent will
inform others that it will proceed to the next task. This com-
munication is entailed by its commitment to maintaining the
shared awareness of the progress of team activities. It is
such commitments that force individual agents to commu-
nicate their private information, if necessary, to teammates,
just like the role joint intention plays in the joint intention
framework [6].

In addition to themaintenanceof a shared mental model
among the agents, another novelty of our architecture is
how to leveragethe computational shared mental model to
achieve effective teamwork. As we mentioned, in DAA the
SMM is used to do dynamic task allocations among team-
mates (this process also allows agents to update their SMM
regarding responsibility of teammates), and in DIARG the
SMM is used to anticipate others’ information needs. In the
next, we will discuss two other uses of SMM in detail: (1)
how SMM can be used to decide whether to assist team-
mates regarding detected information needs of teammates
when communication cost is taken into consideration, and
(2) how SMM can be used to guide information fusion in
order to meet others’ higher-level information needs.

3.1 Deciding Proactive Communication Using
SMM

As a kind of helping behavior, an agent will consider
proactively inform (ProInform) other teammates when it
believes delivering the information will enable the receiving
agents to perform actions or make better decisions. How-
ever, when communication cost (risk) is considered, it’s
not necessary that proactive information delivery can al-
ways benefit the whole team. For instance, the messages
to teammates may be overheard by agents in an opposite
team, which may induce the opposite team to change its tac-
tical strategy to attack the first team. Hence, rational agents
should be able to evaluate the utility ofProInform vs. the
potential cost before actually doing it.

Generally speaking, factors that may affect the decision
can be grouped into two categories: (1) communication
costs to self, and (2) potential impacts of the decision to
teammates. The first factor may involve uncertainty due to
the characteristic of the environment. For instance, if an
agent communicates in a battle space, it may be detected by
the enemy with a certain probability (based on knowledge
about the sensor capabilities of the enemy). The second fac-
tor is the agent’s belief about how useful the information is

to the teammate, and how much damage the teammate will
suffer if the information is not delivered.

Our decision-theoretic communication strategy consid-
ers the utility of the communication action, its cost, and the
uncertainty of the different possible outcomes in calculat-
ing an expected utility of theProInform communicative
action. A similar calculation can be made for the expected
utility of not taking the action. Agents simply chooses the
decision with the highest expected utility [10]. In other
words, if the expected utility of the action exceeds the ex-
pected utility of not taking the action, a CAST agent, being
a rationale one, will choose to proactively deliver the infor-
mation to the teammate who needs it, even if such commu-
nication may introduce risk to the agent.

More formally, let ai denote a possible decision re-
garding whether to proactively communicate a particular
piece of information to a specific information needer (say,
agentB), Oj denote the possible outcomes of that decision,
P (Oj |ai) denote the conditional probability that outcome
Oj will occur given that the agent choosesai, C(Oj) denote
the communication cost of the outcomeOj , andUB(Oj)
denote the utility of outcomeOj to the information needer
(B). The expected utility of the decisionai is

EU(ai) =
∑

j P (Oj |ai)× (UB(Oj)− C(Oj)).
However, it’s not easy to get the expected utility. To

do this, agents need to know all the potential outcomes of
the decision, and all the corresponding values ofC(Oj),
UB(Oj), andP (Oj |ai). One difficulty is that all such fac-
tors are domain and situation dependent. For instance, com-
munication cost may involve resource constraints (network
bandwidth constraints, the energy required, etc.) and the
potential risks due to communications. While the resource
constraint is often known and static, communication risk
typically depends on the situations (e.g., depending on the
location of a scout agent, sending a message may or may not
be detected by enemies). The impact of a communication
decision on the receiving agent is even more complicated.
This may require the decision maker to know the utility of a
piece of information to the potential receiver, which is even
harder to figure out. For example, suppose an attack mis-
sion requires two bombers to strike the enemy target simul-
taneously. Informing threats from an approaching enemy
aircraft may protect a bomber from being destroyed. How-
ever, the utility of informing threats depends on how many
bombers are alive (and possibly their distance to the target).

We deal with this challenge through collecting the
abovementioned domain-related knowledge either by do-
ing large-scale experiments (e.g., the probabilities) or from
domain experts, and encoding the expertise as part of the
Shared Mental Model maintained by all the agents in a
team. Such expertise can then be used (e.g., through case-
based reasoning) in calculating the expected utilities of
communication decisions.

In deciding whether or not to deliver newly sensed infor-
mation to the needers, the Shared Mental Model can also
be used in another way. An agent’s belief about whether
the potential receiver already knows about the information
also affects its decision making. This kind of beliefs can be
approximately established based on an agent’s SMM about
the teammate’s observability.

3.2 Fusing Information Using SMM

Level two processing of the JDL Data Fusion Process
Model [2] uses the raw data combined and refined at level
one processing to develop a description of relationships
among entities and to interpret the current situation. For
example, level 2 fusion can be used to develop an interpre-
tation of the composition and disposition of the local threat
forces and their current activities [14]. Here we show how
the SMM with regard to the structure of information needs
can be used in this means.

As mentioned, information needs graphs enable agents
to make better anticipations regarding others’ information
needs by tracking the progress of team activities. Each node
in an ING stands for one plan or primitive operator (for leaf
node) called directly or indirectly by the plan labeling the
root node. The potential doers and the preconditions of a
plan are also recorded in the corresponding node of an ING.

Another key feature of CAST is that the preconditions
of each plan are constructed as a tree structure. That is, for
each node in an ING (as shown in Fig. 2) there is an embed-
ded tree capturing the different abstract levels of precondi-
tions. Fig.4 shows an example of such precondition trees,
wherer1, · · · , r10 are predicates describing certain domain
related information required to executing the corresponding
plan. In the construction time of an ING, when a node cor-
responding to some planpi is created, the precondition tree
for pi can be generated as follows. If the precondition of
pi is a single predicate, create a root node labelled with the
predicate; if the precondition is composed of a set of predi-
cates, create a virtual root node, then create a node for each
of the predicates and make these nodes sons of the virtual
root node. Then, populate the tree by applying the follow-
ing recursive algorithm to the leaf nodes.

Algorithm: populateTree(Node nd, Predicate pd)
/* get the Horn Clause with pd as its head */
hc = getHornClause(pd);
if (hc is Null) return;
/* get all the negative literals of hc */
plist = tail(hc);
for each pred in plist

pn = createNode(pred);
addSon(nd, pn);
populateTree(pn, pred);

end.

r1

r2
 r3

r9
 r10

r4
 r5
 r6

r7
 r8

Fusion rules as Horn clauses in
 JARE
:

((
r1
) (
r2
) (
r3
))

((
r2
) (
r4
) (
r5
))

((
r3
) (
r6
) (
r7
) (
r8
))

((
r8
) (
r9
) (
r10
))

Fig. 4 A Precondition Tree

The precondition trees can be used in at least two ways.
First, they can be used in collaborative constraints satisfac-
tion. Suppose we have the precondition tree as shown in
Fig. 4 for some planpi, where the root is a virtual node (i.e.,
the preconditions ofpi is specified as(r2 r3)). Note that in
a precondition tree, the nodes at the same level collectively
form a context for each individual node. For instance, in
this example,r2 is useful only when it is evaluated together
with r3, thus,(r2 r3) establishes a context for bothr2 and
r3. Now, suppose agentsA1, A2 andA3 share this pre-
condition tree, andA3 is the doer of planpi. Also suppose
A1 has (no) the information described byr2 (r3), andA2

has (no) the information described byr3 (r2). In this case,
obviously neitherA1 nor A2 alone can enableA3 to dopi.
However, they can collaboratively satisfyA3, becauseA1

knowsr2 will be useful forA3 in the context(r2 r3) and
A2 knowsr3 will be useful forA3 in the context(r2 r3).
Here, forA1 andA2, the direct information needs ofA3 is
(r2 r3) as a whole, but bothA1 andA2 can infer the indi-
rect information needs (i.e.,r2 andr3 in separate) ofA3 by
reasoning on the shared precondition tree.

Second, the precondition trees can be used to guide in-
formation fusion by breath-first reasoning. For the example
shown in Fig.4, suppose the predicater1 labeling the root
is the precondition specified for planpi, agentA1 can ob-
serve the information described byr2 andr3, and agentA2

is the doer of planpi. Assume that whatA2 needs (i.e.,
r1) can not be directly observed from the world. To meet
A2’s needs,A1 can query its reasoning engine to check
whetherr1 holds or not. According to the Horn clause
((r1) (r2) (r3)) (i.e. r1 ← r2, r3), the truth value ofr1
depends on the truth values ofr2 andr3. Being aware ofr2
andr3, A1 can fuser2 andr3 to creater1 and informr1 to
A2 proactively. Alternatively, knowingr2 andr3 are neces-
sary in derivingr1, and knowing the inference knowledge

(i.e., the relevant Horn clauses) is also shared byA2, A1

may choose to sendr2 andr3, while leaving the task of fu-
sion computing toA2 itself. In such case, forA1, informa-
tion r2 andr3 are indirectly needed byA2. The difference
of the two alternatives is who will do fusion computing, the
information provider or the information consumer.

Information fusion can also be carried out by depth-
first reasoning. One difference is that breath-first reasoning
guarantees that the higher-level information will always be
delivered with higher priorities than the lower-level infor-
mation, which ensures the information consumers consider
higher-level information first. As we will discuss later, This
is more significant when the the information consumer only
has limited cognitive capacity.

4 Experiments

To evaluate the impacts of the SMM implemented in
CAST on team performance, we conducted two simula-
tion experiments. The objective of the first experiment is to
evaluate how CAST’s decision-theoretic approach to proac-
tive communications affects the performance of the team,
while the objective of the second experiment is to evalu-
ate how information fusion may improve team performance
in terms of tactical decision makings when the decision-
maker’s cognitive capacity is under consideration. Both ex-
periments are carried out in a simulated battlefield repre-
sented by a21 × 21 grid world, where two opposing agent
teams, a friendly team (blue) and an enemy team (red), nav-
igating in the combat field to achieve certain team goals.

4.1 Experiment I: The Decision Theoretic Com-
munication Strategy

4.1.1 Scenario and Experiment Design

In the first experiment, the blue team adopts an offensive
strategy: the team goal is to destroy the homebase of the
red team. The red team tries to protect their base by attack-
ing any approaching agents of the blue team. The blue team
is formed by agents with three different roles: the scout,
who can sense but can not shoot; the fighter, who can shoot
but can not sense; and the bomber, who can only bomb the
enemy base. To complete the mission, at least two bombers
have to surround the enemy base and perform a joint action
called co-fire at the enemy base. The structure of the blue
team is designed based on four assumptions: (1) members
of the team have limited and different observability, (2) the
team needs to act under critical time constraints, (3) com-
munication cost is not negligible, (4) the team has a well-
defined structure and process. For instance, agents with
different roles in the blue team have different observabil-
ity. Furthermore, each agent’s observability is limited. The

Fig. 5 Number of Accomplished Missions

0

5

10

15

20

25

30

35

40

1
 2
 3
 4
 5
 6

Enemy Units

M
is

si
on

 s
uc

ce
ed

ed

Strategy S2

Strategy S1

scout agent can only sense enemy agents that are within its
sensing range. To ensure that agents can coordinate accord-
ing to its plan, the scenario requires that at least two bomber
agents synchronize and bomb the enemy base at the same
time in order to accomplish the mission.

The behavior of the blue team is governed by team
plans and individual plans specified in MALLET, along
with other related domain knowledge. The team will coor-
dinate their movement toward a series of waypoints which
ultimately leads to the enemy base. Being informed about
the location of the enemy base, the bombers will move to-
ward the enemy base and try to synchronize co-fire actions
to complete the mission, while the unassigned fighters will
also move toward the enemy base to protect bombers when-
ever needed. When informed about the location of a moving
(red team) enemy, a dynamically assigned fighter (based on
the team’s SMM about the constraint of the assignment and
workload) will move toward the enemy’s location and shoot
at it. Meanwhile, if a bomber gets such information it will
try to move away from the threat.

The red team involves three types of agents: one agent
protecting a waypoint on the blue team’s attack plan, one
agent protecting the homebase, and other agents patrol
around the homebase following a circle whose radius is de-
termined by their initial locations, which are randomly as-
signed. Unlike the blue team, the red team agents do not
have a shared mental model. They each act independently
without communicating with each other. The only coordi-
nation in the red team is that the enemy base sends the lo-
cation of detected intruders (i.e., blue agents) to a red team
agent who is closest to the intruder (for initial assignment)
or to a red team agent who has been previously assigned to
the intruder (for tracking later).

Each agent in the red team has a sensing range. Even
though this sensing range is slightly shorter than that of the
scout agent in the blue team, the range is much further than
that of the fighters and bombers in the blue team. When

Fig. 6 Average Number of Remained Agents

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1
 2
 3
 4
 5
 6

Enemy Units

R
em

ai
ne

d
A

ge
nt

s

Strategy S2

Strategy S1

a red agent detects a blue agent, the red agent will move
toward the blue agent, shoot at it and kill it once the blue
agent is within the shooting range.

To ensure that the communication cost is not negligible,
we designed the scenario to introduce a risk factor into an
agent’s communication: a risk that a blue agent’s location
can be detected by the enemy base if the agent sends a mes-
sage within a “detection ring” of the enemy base. If the red
agent base detects the location of the blue agent, it informs
one of the enemy agents about it so that it moves toward the
location and tries to shoot at it.

In this experiment, we designed two communication
strategies for the blue team to study the effectiveness of
our algorithm for decision-theoretic evaluation. The two
strategies differ on how they handle the communication de-
cisions on whether to proactively inform bombers and fight-
ers about enemy agents’ location. The strategyS1 always
informs the closest bomber about detected enemies so that
the bomber can escape.S1 also always informs fighters
about enemy locations so that the fighters can move toward
the enemies and attack them.S2 adopts a decision-theoretic
approach to choosing whether to inform teammates about
the detected enemies. If the expected utility for proactive
communication exceeds the expected utility of not commu-
nicating, the agent will choose to communicate. Otherwise,
it will withhold the communication. It is worth noting that
when the decision ofS2 is “ProInform”, the effect is equiv-
alent to the effect of usingS1, whether the decision is right
or not; while when the decision ofS2 is “not ProInform”,
the effect is better than that ofS1 if the decision is right, and
the effect is worse than that ofS1 if the decision is wrong.

In addition to communication strategies, we also use
number of enemy units, ranging from 1 to 6, as another
independent variable, which indicates the level of domain
complexity. Obviously, the more enemy units protecting the
waypoint and the homebase, the more difficult the mission
becomes. For the red team, when the configurations have
two enemy units, they patrol around the enemy base and

Fig. 7 Average Number of Remained Scouts

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1
 2
 3
 4
 5
 6

Enemy Units

R
em

ai
ne

d
S

co
ut

s

Strategy S2

Strategy S1

Fig. 8 Ave. Number of Remained Enemies

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1
 2
 3
 4
 5
 6

Enemy Units

R
em

ai
ne

d
E

ne
m

ie
s

Strategy S2

Strategy S1

the waypoint respectively; when configurations have only
one enemy unit, it simply patrols around the enemy base.
For each configuration, we generated 40 missions by ran-
domly assigning initial positions of the agents. Blue team
agents were randomly assigned within the upper left5 × 5
“launching region” of the mission. The enemy unit agents
were randomly assigned to a location within a radius of the
target (e.g., the enemy base or a waypoint) it is protecting.

4.1.2 Result Analysis

Fig. 5 summarizes the number of successfully completed
missions (out of 40 missions in total) for the blue team
using the two communication strategies. As shown in the
figure, strategyS2 outperformed strategyS1. The perfor-
mance difference between the strategies was more signifi-
cant when the number of enemy units increased. These ex-
perimental results suggest that the decision-theoretic com-
munication strategies can be effective for team-based agents
to decide on whether to proactively deliver needed informa-
tion to teammates when communication carries a cost.

To gain a better insight about the results, Fig. 6, 7, and
8 show the average number of blue team agents, blue team

Fig.9 Final Performance by Cognitive Level

0

20

40

60

80

100

120

Very low
 Low
 Medium
 high

Cognitive Level

F
in

al
 P

er
fo

rm
an

ce

Fusion

Non_Fusion

scout agents, and enemy unit agents that survived. While
the two strategies resulted in slight difference on the number
of survived blue team agents, they differ significantly on the
scout agent. In fact, the decision-theoretic communication
strategy (S2) was able to maintain the survival rate of scout
as the number of enemy units increased, as shown in Fig.
7. In contrast, the survival rate of scout agent decreased
rapidly under the alternative communication strategy (S1).
These observations suggest that considering the risk factor
of agent communications help to protect the scout agent,
which contributes to higher mission success rate.

4.2 Experiment II: The Effect of Information Fu-
sion on Decision Making Tasks

4.2.1 Scenario and Experiment Design

The purpose of this experiment is to understand how signif-
icant the information fusion is to team performance, espe-
cially to the accuracy of decision-making tasks, when the
information consumer has only limited cognitive (informa-
tion processing) capacity. The long-term goal of this study
is to explore solutions to the dilemma emerging in Bat-
tleSpace InfoSphere: the more information the better tac-
tical decisions can be made, but not too much when the
cognitive capacity of the decision maker is considered.

In this experiment, the blue team adopts a defensive
strategy: the blue force is trying to prevent assault from the
red force. Collaborating for the blue side are three battle
functional areas (BFAs): the intelligence cell (S2), the oper-
ations cell (S3), and the logistics cell (S4). For the purpose
of this scenario the goals of the BFAs have been simplified
and defined as follows:S2 has as its objective the assess-
ment of all enemy locations, actions and intent;S3 has as
its objective the defeat of the enemy and protection of the
supply routes; andS4 has as its objective the identification
of supply routes and sustainment of supplies. We use CAST
agents to play the role ofS2, S3, S4, fighting forces under

Fig.10 Decision Accuracy by Cognitive Level

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Very low
 Low
 Medium
 High

Cognitive Level

D
ec

is
io

n
A

cc
ur

ac
y

Fusion

Non_Fusion

the control ofS3, and unmanned-aerial-vehicles (UAV) un-
der the control ofS2.

To make a comparison, two blue teams are designed: a
fusion team and a non-fusion team. In the fusion team,S2
fuses the information collected by UAVs and other BFAs
into higher-level information, and send it toS3 for making
decisions. In the non-fusion team,S2 simply forwards the
relevant information collected by UAVs toS3, which has to
take some effort in processing the lower-level information
before making decisions. At each time steps, based on the
information currently available,S3 tries to make decisions
on whether to fire at the approaching enemies depending
on whether the enemies introduce a high-threat to the main
supply route. To simulate the behavior of logistics,S4 is
designed such that it moves along the main supply route,
and changes the supply route whenever a threat comes. The
game is over as soon asS4 arrives at the pre-specified target.

The members of the red team are randomly launched and
moving nearby the main supply route to introduce potential
threats to blue teams. For each run, the number of enemy
units and their routes are randomly configured.

For the first set of experiments, we manipulate the cogni-
tive capacity ofS3 for both blue teams to examine its effects
on final team performance and the decision accuracy. For
simplicity, we simulate the cognitive capacity as a limited
memory queue. Being overloaded means the agent cannot
handle the information beyond its limited memory queue.
We distinguish four levels of capacity ranging from “very
low”, “low”, “medium” to “high”.

We launched 400 runs for each blue team. Each point in
Fig. 9 and Fig. 10 corresponds to the accumulated results
out of 100 runs (20 runs for each configuration of enemy
units ranging from 3 to 7). Fig. 9 shows the number of mis-
sions succeeded, and Fig. 10 shows the decision accuracy
computed bynum(correct-decisions)/num(total-decisions).
S3’s decision is correct if it is the same as that computed by
world simulator (which has complete information).

Fig.11 Final Performance by Enemy Units

0

10

20

30

40

50

60

70

80

90

3
 4
 5
 6
 7

Enemy Units

F
in

al
 P

er
fo

rm
an

ce

Fusion

Non_Fusion

For the second set of experiments, along the dimension
of domain complexity, the number of enemy units is varied.
We launched 400 runs for each blue team using the number
of enemy units as control variable (from 3 to 7). Each point
in Fig. 11 and Fig. 12 corresponds to the accumulated re-
sults out of 80 runs. Fig. 11 shows the number of successful
missions, and Fig. 12 shows the decision accuracy.

4.2.2 Result Analysis

According to Fig. 9, the fusion team in general outper-
formed the non-fusion team. Additionally, the performance
difference between the fusion team and non-fusion team in-
creased as S3’s cognitive capacity decreased. From these
results we may conclude that information fusion capability
can be a very important factor of team performance when
the information consumer has poor cognitive capacity. The
same results are true when the decision accuracy is com-
pared, as shown in Fig.10. Further, in Fig. 10 the decision
accuracy of the non-fusion team increased as S3’s cognitive
level increased, while there is no such trend for the fusion
team. This may suggest the decision accuracy of the non-
fusion team is more sensitive to cognitive level changes.

When the number of enemy units acts as control variable,
the fusion team also outperformed the non-fusion team in
general, as shown in Fig. 11 and Fig.12. The performance
and decision accuracy of both teams decreased as domain
complexity increased. However, the gap in team perfor-
mance and decision accuracy between the two teams be-
came bigger as the number of enemy units increased. These
results may indicate that the benefits of fusing information
become stronger as the domain complexity goes up.

5 Other Attempts Using CAST

The CAST architecture empowered with computational
shared mental model has being used in two other areas.

Fig.12 Decision Accuracy by Enemy Units

0.6

0.65

0.7

0.75

0.8

0.85

3
 4
 5
 6
 7

Enemy Units

D
ec

is
io

n
A

cc
ur

ac
y

Fusion

Non_Fusion

First, computational shared mental models are crucial for
modeling team behaviors in the support of distributed team
training. Applied to the team training domain, a SMM can
be used to model the behavior or assess the performance of
individual team members, sub-teams or the entire team, to
provide intelligent coaching feedbacks and customize train-
ing sessions in term of human trainee’s specific needs.

We are interested in implementing user modeling and in-
telligent coaching agents to teach trainees regarding collab-
oration skills. For example, knowing when to communicate
and what information needs to be delivered is among one of
the desired collaborative skills for trainees to learn. In terms
of collaboration behavior, several characteristics of effec-
tive human team is considered, such as anticipating others’
information needs and backing up overloaded teammates.

A user modeling approach has being developed lever-
aging the Shared Mental Model implemented in CAST,
where human trainees can act as virtual agents interact-
ing with team members including expert coaching agents.
CAST coaching agenthas three additional components–
User Model (UM), Expert Model (EM), and Team Assess-
ment Module (TAM). TheUser ModelComponent refers
to trainer’s model of a trainee, e.g., knowledge about the
trainee’s knowledge or lack of knowledge, its specific skills,
etc. Expert Modelcomponent serves as a domain expert
who knows what actions, especially collaborative actions, a
trainee should do. The embedded SMM enables the expert
model to automatically anticipate such needs for collabora-
tions. TheTeam Assessment Moduletakes both inputs from
human trainee (based on the monitoring results of user ac-
tions through user interface) and from the Expert Model.
By comparing the expected actions from EM and the ob-
served behavior of the trainee, the trainee’s performance can
be evaluated regarding the team tasks, and certain adaptive
coaching feedbacks will be sent to the UM if necessary.

Second, CAST agents have being used in an extended
Robocup Rescue domain where the center agents are played

by humans. Due to the dynamic, complex nature of the dis-
aster domain, agents have to collaborate with each other ef-
fectively to save civilians and extinguish fires under time
pressure. A SMM serves as the support for agents to antic-
ipate the needs of their teammates regarding disaster infor-
mation and proactively deliver the information to them.

In this domain, center agents are responsible for mak-
ing critical decisions regarding task allocations due to their
relatively broader situation awareness compared with pla-
toon agents. We choose humans to play the center agents
because human’s powerful spatial reasoning ability can be
better leveraged in the decision making process.

To bring humans in the loop, each human has an associ-
ated interface agent, through which the human collaborates
with other teammates. Both the interface agents and the pla-
toon agents (ambulances, police forces and fire brigades)
are customized CAST agents, so that they can maintain a
computational SMM.

Based on the SMM maintained between the platoon
agents and interface agents (simply model human’s part), a
platoon agent can proactively meet center agents’ informa-
tion needs (for making better decisions on task allocation)
by sending the relevant information it collects. On the other
hand, having a SMM with platoon agents, center agents can
provide decision supports for them.

6 Conclusion

This paper focused on the cognitive construct “shared
mental model”, and presented our work on computational
shared mental model and its use in anticipating teammates’
information needs, in deciding whether to proactively send
a piece of information, and in fusing lower-level informa-
tion to meet teammates’ high-level information needs.

The computational shared mental model is based on an
extension to the standard PrT nets. Petri Nets have been
tried before for simulating teamwork [7], and were found to
be slow and difficult in maintaining. Our approach, how-
ever, has been shown to be much more successful. By sepa-
rating domain independent aspects from domain dependent
ones, teamwork models can be captured into several ab-
stract levels, which allows an agent to track team processes
in PrT nets only at the needed level of detail. In addition, by
simulation experiments, we examined how shared mental
model enables CAST agents to adopt proactive communi-
cation only when necessary, and how shared mental model
can be used to fuse information to alleviate the cognitive
overload problems faced by human decision makers.

The vision of our research – empowering agents with
shared mental models for enhancing their proactive team-
work behaviors – is powerful, yet challenging. It is pow-
erful because we can easily recall our personal experiences
in which we benefit from proactive help from teammates,

colleagues, friends, and even family members. These expe-
riences help us, and to some degree convince us, to imagine
all kinds of agent-based services that may be possible under
this vision. However, the vision is also highly challenging.
The scope of “shared mental model” is very broad, and we
need to achieve two conflicting goals regarding teamwork
modeling using SMMs: high efficiency and high adaptabil-
ity. Maximizing adaptability often introduces overhead for
communication and coordination, while maximizing effi-
ciency tends to reduce the adaptability of the team. There-
fore, finding an acceptable tradeoff between these two con-
flicting goals has been a continuous challenge.

To tackle the challenge regarding the broad scope of
SMMs, we have focused on a component of SMMs – shared
team process (and related team structure). This computa-
tional SMM plays a critical role in allowing CAST to find
a desired balance between achieving efficiency and main-
taining adaptability in teamwork modeling. Efficiency of
teamwork is realized by (1) anticipating information needs
of teammates using the SMM, (2) adopting a decision-
theoretic strategy for proactive communications based on
the SMM, and (3) rationally fuse information to meet oth-
ers’ higher-level information needs. Adaptability of the
team is realized by dynamically assigning tasks among
agents (which updates the SMM) based on the SMM regard-
ing their roles and other constraints specified in the team
plans.

Due to the rapid advancement of information technolo-
gies, the amount of information that needs to be analyzed,
interpreted, shared, and fused by a team has been increas-
ing at a speed never seen in human history. This trend has
begun to raise the challenges of information sharing, collab-
oration, decision support for teams to a new level. Empow-
ering software agents with a better understanding about the
behavior of team members (including humans) can become
increasingly important for developing solutions for address-
ing these challenges.

Acknowledgments

This research is supported by a DOD MURI grant
F49620-00-1-0326 administered through AFOSR.

References

[1] E. Blickensderfer, J. A. Cannon-Bowers, and E. Salas.
Cross-training and team performance. In J. A. Cannon-
Bowers and E. Salas, editors,Making Decisions Under
Stress, pages 299–311. Washington DC: American Psycho-
logical Association, 1998.

[2] R. R. Brooks and S. S. Iyengar.Multi-Sensor Fusion: Fun-
damentals and Applications. Prentics Hall, New Jersy, 1998.

[3] J. A. Cannon-Bowers, E. Salas, E. L. Blickensderfer, and
C. A. Bowers. The impact of cross-training and workload

on team functioning: A replication and extension of initial
findings.Human Factors, 40:92–101, 1998.

[4] J. A. Cannon-Bowers, E. Salas, and S. A. Converse. Cogni-
tive psychology and team training: Training shared mental
models and complex systems.Human Factors Society Bul-
letin, 33:1–4, 1990.

[5] J. A. Cannon-Bowers, E. Salas, and S. A. Converse. Shared
mental models in expert team decision making. InIndividual
and group decision making, pages 221–246. Castellan, NJ,
1993.

[6] P. R. Cohen and H. J. Levesque. Teamwork.Nous,
25(4):487–512, 1991.

[7] M. D. Coovert and K. McNelis. Team decision making and
performance: A review and proposed modeling approach
employing petri nets. In R. W. Swezey and E. Salas, ed-
itors, Teams: Their Training and Performance. Ablex Pub
Corp., 1992.

[8] B. Grosz and S. Kraus. Collaborative plans for complex
group actions.Artificial Intelligence, 86:269–358, 1996.

[9] B. Grosz and S. Kraus. The evolution of sharedplans.Found.
and Theories of Rational Agencies, pages 227–262, 1999.

[10] E. J. Horvitz, J. S. Breese, and M. Henrion. Decision the-
ory in expert systems and artificial intelligence.Journal of
Approximate Reasoning, 2(Special Issue on Uncertainty in
Artificial Intelligence), pages 247–302, 1988.

[11] T. R. Ioerger. Jare: Java automated reasoning engine.
[12] J. Orasanu. Shared mental models and crew performance. In

Proceedings of the 34 Annual Meeting of the Human Factors
Society, Orlando, FL, 1990.

[13] C. Porter, J. Hollenbeck, D. Ilgen, A. Ellis, B. West, and
H. Moon. Towards understanding backing up behaviors in
work teams: The role of personality and the legitimacy of
need for backing up others.Journal of Applied Psychology,
page in press, 2003.

[14] G. M. Powell and B. Broome. Fusion-based knowledge for
the objective force. InNational symposium on Sensor and
Data Fusion, 2002.

[15] W. Rouse, J. Cannon-Bowers, and E. Salas. The role of men-
tal models in team performance in complex systems.IEEE
Trans. on Sys., man, and Cyber, 22(6):1296–1308, 1992.

[16] C. E. Volpe, J. A. Cannon-Bowers, E. Salas, and P. Spec-
tor. The impact of cross-training on team functioning: An
empirical investigation.Human Factors, 38:87–100, 1996.

[17] J. Yen, X. Fan, and R. A. Volz. On proactive delivery of
needed information to teammates. InProc. of the Workshop
on Teamwork and Coalition Formation at AAMAS’02, pages
53–61, July 2002.

[18] J. Yen, X. Fan, and R. A. Volz. Proactive information ex-
changes based on the awareness of teammates’ information
needs. InProceedings of the AAMAS 2003 Workshop on
Agent Communication Languages and Communication Poli-
cies, Melbourne, Australia, 2003.

[19] J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu, and R. Volz.
Cast: Collaborative agents for simulating teamworks. In
Proceedings of IJCAI’2001, pages 1135–1142, 2001.

[20] J. Yin, M. S. Miller, T. R. Ioerger, J. Yen, and R. A. Volz.
A knowledge-based approach for designing intelligent team
training systems. InProceedings of the Fourth International
Conference on Autonomous Agents, pages 427–434, 2000.

