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Abstract. In complex skill-training systems, trainees are required to
master multiple skills in a limited time, which may produce a large men-
tal workload. Increased workload often affects performance, and trainees
may get distracted or overloaded during training. Attention control is a
critical activity in time-sharing environments with automatic tasks, and
psychologists found that better attention control strategies can develop
through training. Even though attention management is a key skill has to
be acquired, it has not been considered to assess as a user model content
sufficiently. In this paper, we propose an approach for attention-control
modeling by detecting regular behavioral patterns that potentially ex-
plain the interdependency between primary and subtask performance.
We can detect trainees’ attention shift between tasks by interpreting the
serial episodes of behaviors that have been uncovered. As a high attention
needing training domain, we used Space Fortress game in which contin-
uous input stream of ship maneuvering and intermittent event data are
the source of the user model. We found the dependencies between these
heterogeneous, multi-time streams and the point of attention shift. Do-
main experts or training coaches can infer the trainees’ attention-control
skill based on the detected rules of pattern that help them to instruct
desirable strategies to handle multi subtasks.

1 Introduction

A user model consists of all the information and explicit assumptions regarding
all aspects of the user. User modeling techniques can effectively support learning
on demand by helping users to identify opportunities to learn additional func-
tionality relevant to the task at hand and to prevent people from getting stuck
in a sub-optimal plateau. Generally, user models address three issues: (1) infer-
ring the user’s knowledge or general abilities; (2) recognizing the user’s plans
or goals; and (3) predicting the user’s inferences and behaviors. The first issue
is also called the assessment problem. Assessment has been an important issue
because even when it is possible to process numerous observations about a per-
son, with carefully chosen and interpreted references to an extensive empirical



database, the task of dealing with the uncertainty associated with the evidence
is challenging [10]. The uncertainty of assessment is unavoidable because of the
gap between the observed and the inferred evidence and the conclusions drawn.
Recently, user modeling has shifted its focus from dialogue systems to inter-
active applications. When the user controls interactions with applications such
as games or training programs, it is hard to identify relevant information that
will become the content of the user model and may later on serve to justify an
adaptation step.

Knowledge representation and machine learning technique have been used
to build user model. Compared to knowledge representation based techniques,
machine learning typically accepts observations of user behaviors rather than
assumptions that are statements about the user or already formulated in the
internal representation. Machine learning techniques implement some sort of
uncertainty by using probability, distance measures, and network weights, etc.
From the standpoint of acquisition of user-model content and decision tasks, it
has an advantage over observing data and making direct decisions from learning
algorithms [15]. The purpose of the user model in training programs is to improve
the training performance based on the detection of the trainee’s current skills and
less-than-optimal strategies. In complex skill training, the substantial numbers
of individuals fail to develop proficiency and the performance of an expert is
qualitatively different from that of a novice. Trainees are required to master
multiple skills in a limited time, which may produce alarge mental workload. The
difficulty is that some trainees can perform an individual component skill well,
but cannot operate well in high-workload situations [17]. The attention-control
skill is defined as the ability to allocate attention away from an automatic task
to concentrate more resources on non-automatic tasks. According to cognitive
scientists [22, 6], we can perform multiple tasks at one time, as long as we have
enough attentional resources and the tasks do not interfere with each other.

In psychological perspective, trainees usually move from explicitly controlled
processes into implicit, automatic processes [18,16]. Therefore, the author hy-
pothesizes that trainees’ attention control skill can be assessed by modeling au-
tomaticity of the primary task, while concurrently manipulating the secondary
tasks. In other words, as the skill in the primary task increases, available at-
tention to handle secondary tasks will increase, which enlarges reserve capacity,
so that trainees can positively respond to secondary tasks. In this research,
we propose an approach for attention-management modeling using Data Min-
ing techniques. We apply rule-discovery methods aimed at finding relationships
from the multiple time series with modified episode rules [13]. By detecting reg-
ular behavioral patterns that potentially explain the interdependency between
primary and subtask performance, we can assess trainees’ expertise in attention
control and map out the attention shift between tasks.

2 Related Work

Finding out hidden rules that can represent dependency between one time series
data and the other one is interesting problem. The association discovery rule



[2] has been developed for finding coexistence of certain values together from a
set of transactions. The AprioriAll algorithm [1] can operate on categorical data
and considers the coexistence of items within a range. Many applications have
used this algorithm to detect association or sequential patterns in single time
series data [7,21]. However, the effort to handle multiple, heterogonous time
sequences with concurrent events has been tried only rarely. Researchers have
tried to discover temporal patterns from multiple streams of homogeneous time
series. MSDD (multi-stream dependency detection)[14] method uses a general-to-
specific algorithm to detect significant dependencies between multiple streams. It
treats dependency detection as an efficient search for the & most predictive rules
in search space but it has some limitation to a small number (< 6) of categories
in time-series data. Because it is sensitive to time interval it is inappropriate
for detecting frequent serial events regardless of intervening events. Hoppner’s
method [9] considers the time interval and the order of events. He tried to dis-
cover temporal patterns in a single series of labeled intervals. He mapped the
continuous time series into attributed intervals to apply temporal logic to the
single time state sequence. In fine-grained domains such as Space Fortress game,
most events have relatively short durations that have no significant meaning for
intervals, it gets complicated when try to map into time intervals. Das et al. have
transformed continuous time series into tractable, discrete sequences by using
clustered windows [3]. They extended their framework for two series by merging
them into a single, discrete sequence. In their work, they did not sufficiently
address the problem of how to order clustered data from different time streams
into one sequence when the temporal order should be considered.

As another approach to find association of behavioral patterns, Subrama-
nian et al. studied in tracking the evolution of human subjects’ control policies
from a large, sequential corpus of low-level data [20]. They partitioned episodes
into nearly stationary segments using Kullback-Leibler (KL) divergences to track
when the change in policy between adjacent segments is significant. The learning
model of control policies is a lookup table that contains a distribution of the ac-
tions that were taken in response to each observed perceptual input vector in the
episodes. However, the lookup table model needs a more compact representation
of the detected model that can be conveyed to human trainees.

For multimodal human-computer interaction, inferring the focus of human
attention has been recognized recently as an important factor for the effective
communication and collaboration between human and computer. Horvitz et al.
tried to model human attention such as sensing and reason [8]. They employed a
Bayesian network (BN) for inferring attention from multiple streams of informa-
tion, and for leveraging this information in decision-making under uncertainty,
such as an attention-sensitive alerting system. They modeled attentional focus in
a single period with many nodes that link to a focus variable with probabilistic
value. One limitation of BN is that the system designer should define variables
that possibly affect the attentional focus. However, if the network is densely
connected, then inference in the network is intractable. In [19] an approach for
modeling attention focus of participants in a meeting via an hidden Markov



Missile Shi/pk

V'd
Fortress
shot
Mine
Fortress
Bonus points
available

PNTS CNTRL VLCTY VLNER IFF INTRVL SPEED SHOTS

200 100 119 0 w 90 70
@ [E]

«—
Response mouse -

buttons

Joystick

Fig. 1. A Schematic diagram of the Space Fortress game

model was presented. They detected and tracked all participants around the ta-
ble, estimated their gaze direction by neural network, and mapped the observed
gaze to the likely target using a probabilistic framework.

3 Problem Domain: Space Fortress

The Space Fortress (SF) game was developed at the Cognitive Psychophysiology
Laboratory of the University of Illinois to simulate a complex and dynamic
operational environment [12]. This paper used the ongoing version for distributed
team-training SF game as shown in Fig.1. SF game requires a highly concurrent
and coordinated use of perceptual and motor skills. Positive transfer from SF
training to flight training for U.S. Army helicopter pilots and Israeli Air Force
pilots supports the representative nature of the version developed by Gopher et
al. [5]. Based on Frederikson & Whites’ analysis [4], the SF task can be divided
into three goals: (1) circumnavigating the fortress while destroying it as often
as possible, (2) handling mines properly, and (3) gaining bonuses. These three
goals must be achieved for a high total score. The total score is based on the
summation of four sub-scores: Speed (how fast the ship response to friend and
foe mine respectively) , Velocity (how low can the ship speed maintained), Points
(how many times the ship destroyed fortress and mine or damaged by fortress and
mines), and Control (how well the ship maneuvered between the two hexagons)
. We can consider that the primary task is to navigate between two hexagons at



low speeds and the secondary tasks are to handle mines, to earn bonuses, and
to destroy the fortress. Our approach separates destroying the fortress from the
primary goal because we want to classify subtasks according to their relative
attentional component.

Because the SF system accepts concurrent motor actions from various in-
put devices, it is hard to obtain each skill assessment from multiple continuous
stream of performance that shows significant fluctuations over time. We traced
the changing of domain states and occurrence of events by generating a history
file that contains a long sequence of time-indexed data sets of mixed continuous
time series and various other types of events. And then extracted the sequence of
skill performance data to find out whether the alteration of primary task perfor-
mance is related to other subtasks because the performance changing patterns
can provide important information about the trainees’ attention shift. To see
the changing of primary skill performance, i.e., ship velocity, corresponding to
secondary skills, let us examine examples of a contingency analysis of SF. Fig.2
illustrates ship velocity change, distance between ship and mine when mine ap-
pears, appearance of bonus related characters, ship re-positioning, fortress shell
creation, and ship’s wrapping events. In this paper, we only consider interde-
pendency between ship velocity skill and mine existence. Fig.2(a) shows that
subjects with low level skill showed high ship speed during trials. We can ob-
serve that, even when there is no mine, ship speed was still very high because
the subject has such a low skill of ship control that the existence of mine did not
affect the change of speed significantly. Fig.2(b) shows an example of moderately
skilled subjects. Notice that this contingency highly seems that the speed rises
rapidly when mines appear and significantly decreases after mine. We find that
speed fluctuation is more remarkable than low skilled subjects. Fig.2(c) shows
the result from highly skilled subjects. In general, they display low ship speed
during trials even when mines appear. Moreover, we can find some regularity
that explains dependencies between primary and secondary tasks, as well as in-
dividual differences. We can glean these valuable hidden rules from multiple time
streams by data mining. For example, a discovered dependency rule is maybe
”appearance of mine is followed by increasing of ship velocity with confidence
0.5”.

4 Attention Control Model

4.1 General Framework

Given multiple time series of heterogeneous types, an attention control model
can be constructed. Fig.3 shows an example framework. The following procedure
provides the overall sequence, and each process is described in detail below:

1. Transform the continuous time series into a sequence of categorical data.

2. Transform occasional event tuples into an event sequence.

3. Transform multiple-event sequences into single-event sequences with concur-
rent event mapping.
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Fig. 2. Contingency examples of Space Fortress game

4. Apply a serial-episode detection algorithm.
5. Generate rules from detected episodes.
6. Filter the generated rules with informativeness measurement.

Transforming continuous time series into a sequence of categorical
data

Through transformation of continuous time series into a sequence of qualitative
data, we can extract knowledge from a time series that has fluctuations. We can
reduce the continuous time-series data into a compact sequence of knowledge
including a primitive shape of the pattern. We segmented the time series into
subsequences using a sliding time window then clustered these subsequences us-
ing a suitable measure of pattern similarity method, e.g., K-means clustering,
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Fig. 3. General framework for modeling attention control

and then assigned categorical symbols to the fragmented subsequences that cor-
respond to the clustered value.

These steps provide a useful method for discretizing time series [3] and bring
up several related issues. First, how should the width of the sliding time window
be decided? The window size depends on the time scale the user is interested in.
A simple strategy for determinizing width w is that we do not consider the size
at first, but after detecting and interpreting rules, adjust the size according to
the informativeness of extracted rules decided by domain experts. Here, we set
w = 3 after comparing results of various window size; it reflects well any change of
velocity with a fine-grained time interval. Second, how should the time series data
in a window be represented for further analysis? In this study, the change of speed
is the main knowledge to trace so that we define the distance function as the slope
of speed change between the start point and the end point of the window. For
example, a subsequence < &;, Tiy1,- - ,Titw-1 > has slope s; = Z+2=1"%i and
the distance function between subsequence = and y is d(z,y) = \/(s» — sy)?. By
using the degree of change of speed as distance functions, even if average velocity
values differ from subject to subject, we still cluster the change of speed in a
user-adaptive way. The third issue is, if we use a clustering method to process the
data, how many clusters would be reasonable, e.g., choose the value of k for K-
means clustering algorithm. We chose five with expectation to group into rapid
increasing, slow increasing, no change, slow decreasing and rapid decreasing of
velocity.

We have time series data X collected at every time step ¢t with time span

ts, such as X (t) = {t;li =1,2,---,n} where n is a time index and ;41 —
t; = ts. The value of z collected at t; varies along the time line. A slid-
ing time window of width |w| on time series X is a contiguous subsequence
s;i = {z(ti),x(tix1), - ,2(titw—1)}. From a sequence of X, we get the set of

subsequences, s1, 8,1 Of width w, when window slides left to right by one
unit (i.e., window movement v = 1). The subsequences of continuous time series
are grouped by five centroids as shown in Fig.4 when we set k = 5.
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Fig. 4. Transformation of continuous time series by clustering

Transforming occasional events into an event sequence

We have several event types, which occur intermittently and concurrently, such as
mouse inputs to take bonus and joystick inputs to shoot mine while continuously
manipulating joystick to fly ship. Consider k event types E = {e;[i = 1,--- , k}.
For a given event type e; € E, e; has a time step ¢;, the time when the event
occurred. An event of type e; can be represented as a pair (e; € E,t;). For
example, an event e; is input from mouse device by clicking the left or middle
button. Let ES; is a discrete event sequence for e;, which represent e;, which
occurred at time stamp ¢;. By using the same sliding time window as in the
previous continuous time series, the event sequence ES; can be transformed to
the modified event sequence M SE;, where |M ES;| = n —w + 1. Being different
from transformation of contiguous time series, we do not need a clustering proce-
dure. That is, if event e; occurred in the middle of subsequence (i.e., z(t i ) =1,
when s; = {x(t;), -+ ,z(tixw—1)}) then assign the symbol e; to the subsequence;
else assign 0. This process transform the original event sequence into an equal
number of data sequences as that of the transformed categorical sequence.

Discovery of interdependency episodes

We can detect the frequent combination of events by modifying episode rule [13].
First, in the interest of having information about concurrent events, we convert
a set of events on the same time stamp into a new event type as shown in Fig.5.
Thus, given n types of events and k clusters of continuous data we may attain
at most kx ), ,C; = k x (2" — 1) concurrent events type. An episode is a collec-
tion of events in a particular order occurring within a given time window. There
is a combinatorial explosion problem when n gets larger; however in training
domains, we usually have few subtasks to handle. Thus, we do not investigate
the combinatorial issue here. Because events from different sequences contain
performance information for the corresponding task, the event set that occurs
at the same point in time should be considered as a specific event that requires
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the trainees attention control. A modified serial-episode detection algorithm is
a promising method when the order of events in a fine-grained time period has
significant meaning. From parallel episodes, serial episodes are detected by rec-
ognizing the order of events in windows by screening with a minimum frequency
(i.e., min_frequency). This is useful when the size of the sequence is small so that
the scanning time is trivial for recognition.

//Serial episode detection algorithm
Compute C; = {a € €| |a] =1}
=1
While C; # @
//compute frequent episodes
E, ={a e C| freq(a, s,win) > min_freq}

I=1+1
Cir={acel|la] =1,Y88 <, |8 <1,8 € Fig }
For all [ do

// find serial episode from Fj
FS; ={a € F | freq(a;, s,win) > min_freq,i <!}
For all [,1 > 2 do
For all j,7 >1+14do
If B < a where g € F'Sj,a € F'Sj, ’;:Z—ZEZ; > min_conf
// generate serial rules
a—p

Generating rules from episodes

Rule-generating algorithm filters uncovered sequential episodes into serial rules.
An objective informative measure, confidence, is used to filter out uninformative
rules from the generated rules, providing uncertainty of assessment with statis-
tical methods. This basic approach does not consider any domain knowledge,
and as a result, it can generate many irrelevant rules or miss important rules. In
Klemettinen et al. [11], rule templates specifying the allowable attribute values
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For low skilled subject’s case (a), three serial episodes were detected. As shown in
centroid-level table (right below), 'b’ represents almost no changing of ship velocity. '2’
represents a concurrent event in which behavior b’ and appearance of mine occurred
together. The rule b2 — 22 explains that in a given time window (6 second in here),
if the ship velocity does not change in a while and then mine appears, we can expect
that the ship will be in the same velocity with mine appearance in the next step with
50% confidence. (b) and (c) shows detected rules for moderate and high skilled subjects
with the same manner as (a).

Fig. 6. Serial episode rule examples

are used to post-process the discovered rules. Srikant, Vu, and Agrawal [19] used
boolean expressions over the attribute values as item constraints during rule
discovery. As a second filter, training coaches or experts can detect some useful
rules from previously filtered rules.

Fig.6 illustrates the largest serial rules extracted from the data of the three
trainees shown in Fig.2. For instance, the first discovered association rule in
Fig.6(a) shows that when we observe event b and 2 sequentially for the low
skilled subject then we expect event 2 to occur, etc. Notice that other events
can intervene within these frequent events in the given window. Rules in Fig.6(a)
tell us that before the appearance of mine and after disappearance of mine there
are rarely change of speed. We can hypothesize that the subject did not shift
attention to mine because he/she cannot allocate attention away from primary
component that is not yet automated. In Fig.6(b), the rules extracted from
the data of moderate-skilled subject show that speed change increases after
mine occurs. This implies the mine event distracted the subject because the
subject paid attention to mine handling. However, due to limited automation
of the primary component (i.e., navigation), the subject’s performance for the
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component is degraded. Fig.6 (¢) shows the rules extracted from the data of high
skilled subjects. The rules indicate that the speed of ship tends to decrease a
little after mine appearance. This may suggest that the subject’s speed control
skill is well automated, and hence is not disturbed by the appearance of mine.

4.2 Extensions

The ship-mine distance plot in Fig.2 can be used to extract some high-level be-
haviors in the context of the game such as let the mine approaches the ship closer
and then destroy the mine when it is close enough without changing the speed of
the ship, or navigate the ship away from the mine to avoid it. The proposed ap-
proach can model these behavior patterns by adding a preprocessing task such as
calculating the distance between ship and mine for every time step to get a con-
tinuous time series. Through transformation, we can get an event sequence that
includes distance-changing information and then apply a dependency-detection
algorithm to uncover the dependency rules between ship velocity and the ship-
mine distance sequence. One challenging issue is applying these rules to the
other user-modeling components for coaching purpose. A promising approach
is to feed the rules to the systems decision component to generate feedback.
By formalizing part of the rules, a KR-based decision component could gener-
ate user-adaptive feedback such as directing the user’s attention toward certain
events, if the events seem significantly linked to performance, and the user does
not respond in the right way. However, this should be considered on the premise
that training experts or cognitive psychologists analyze the discovered patterns
and rules.

5 Conclusion

In complex skill training environment, the degree of users’ attention control skill
is one of the most important assessments that should be modeled in an appropri-
ate manner. We developed a preliminary computational framework for modeling
attention-management as new user-model content by presenting a dependency
model capturing the dependency relationship between the trainee’s performances
in handling multiple skill components. Inspired by the successes of association
detection technique of data mining area, we used a modified algorithm to pro-
cess raw time-series data and discover hidden rules from multiple streams. The
traced data are time-indexed streams of psychomotor inputs received from mul-
tiple devices and state information resulting from trainees’ behaviors. Provided
that continuous, multiple-time series exists and can be correctly uncovered, the
dependency rules will trace attention shift between skill components. Further-
more, concerning performance fluctuations, serial episode rules will explain to
some extent which events cause or follow performance change. For the further
study, not only for an individual trial, we need to model the changing of atten-
tion control capability as trials go on. The increasing rate of attention control
skill would be a useful user model content.
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