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Abstract

One research focus of human-centered teamwork is
on advanced decision architectures that can help peo-
ple make effective and timely decisions. This requires dis-
tributed team members to effectively establish shared situa-
tion awareness and to collaboratively develop explanations
on how an unfamiliar situation might have been emerg-
ing. One key to achieve this goal is the ability to anticipate
others’ future information needs and to offer help proac-
tively. In this paper we investigate a novel approach to
anticipating teammates’ information needs based on step-
wise conversation pattern recognition, leveraging the idea
of multi-party communication. This approach can be fur-
ther extended to build a computational model for collab-
orative story building as needed in Recognition-Primed,
naturalistic decision architectures.

1. Introduction

Human-centered teamwork, as a subdiscipline of multi-
agent systems, has recently been gaining much attention
including work on policy-based adjustable autonomy [19],
collaboration strategies [18], and advanced decision archi-
tectures [6]. The RPD-agent architecture [6], which ex-
tends the CAST architecture [22] with a computational
Recognition-Primed Decision (RPD) model, has been de-
veloped to support human-agent collaboration in develop-
ing shared situation awareness and in making decisions
based on progressively refined recognitions.

The RPD [12] model focuses on recognizing the simi-
larity between the current decision situation and previous
experiences, which is claimed as the way how human ex-
perts make decisions in complex, dynamic, time-stress en-
vironment. The RPD model captures the cognitive activity
undergoing in the mind of a decision maker when he/she

faces a decision task. However, it becomes more interest-
ing if a team of human experts can establish a shared mental
model about the dynamic progress of the RPD process being
pursued by the decision makers and offer timely assistance
(e.g., information sharing) proactively. It is exactly under
this vision that theCollaborative-RPDmodel [7] is pro-
posed and the RPD-agent architecture [6] is implemented.

Exploring the collaborative nature of the RPD model in-
troduces not only performance gains in team decision mak-
ing but also the challenges inherent in collaborative com-
puting. One challenge is how to effectively developshared
situation awarenessamong team members and to collabo-
ratively build stories to explain how an unfamiliar situation
might have been emerging and how it would evolve.

Obviously, to support story building in a dynamic, dis-
tributed environment, one key is the ability to anticipate
other teammates’ information needs and to provide the
relevant information to the right party at the right time.
Within the CAST system, we have investigated several ap-
proaches to anticipating others’ information needs, includ-
ing information-need anticipation based on team plan anal-
ysis [22], context-centric mechanism based on information-
need graph reasoning [9], and indirect information needs
reasoning [8]. However, all of the above approaches assume
that agents in a team have common knowledge about the
team process being pursued. This becomes a big limitation
when there is a critical need for supporting ‘unplanned col-
laboration’, where a group of agents work together by con-
stantly tracking each other’s progress, by following certain
social norms, protocols, or routine experiences. One intu-
itive approach is to enable agents to anticipate others infor-
mation needs solely based on the social interactions, which,
typically, are composed of conversation patterns.

Story building in teamwork settings typically involves
multiple parties with various expertises. In this paper we in-
vestigate a novel approach to anticipating teammates’ infor-
mation needs based on stepwise conversation pattern recog-
nition, leveraging the idea of multi-party communication.



This approach can be further extended to build a computa-
tional model forcollaborative story building. The remain-
der of the paper is organized as follows. In Section 2, we
review the state-of-art of multi-party communication. We
introduce a formal representation model of multi-party con-
versation patterns and conversational experiences in Section
3, and give algorithms for pattern recognition and needs an-
ticipation in Section 4. Section 5 concludes the paper.

2. Background: multi-party communication

Multi-party conversations are conversations involving
more than two parties. Human society is full of examples
of multi-party communication, such as panel discussions,
presentations, and radio channels in the real world; net
meeting, newsgroup, mailing lists, teleconference, and chat
rooms in the digital world. Recently, research in the area
of agent communication has been shifting attention to sup-
port multi-party conversations [14, 16, 11], motivated by
the fact that the core of societal interactions is communi-
cating within a group [14]. For instance, group communi-
cation is used to coordinate the role-taking of a group of
agents who can play the same role [2]; Traum proposed a
model of multi-party dialogue in immersive virtual worlds,
mainly focusing on attentions and turn-takings [21].

Although multi-party communication can be imple-
mented using the traditional multicasting or broadcasting
technique, they are quite different. A multi-party com-
municative act can carry different intentional semantics
to different parties, it is thus at a higher level than multi-
casting or broadcasting, just like the difference between
the performative ‘tell’ and the physical ‘send’ opera-
tion. In addition, multi-party communication has to address
issues such as recipients being unknown, the sender be-
ing a group, and the intended actors being different from
the recipients [14].

Except for the blackboard metaphor [4, 5], probably the
concept ofshared information netimplemented in DDD
(Distributed Dynamic Decision-making simulation environ-
ment [13]) can be viewed as a prototype of multi-party com-
munication. As illustrated in Fig. 1, human decision makers
(agents) can ‘register’ themselves to as many pre-defined
information nets (dotted ovals) as needed. An information
net is a container of certain types of information dispatched
from various sources (small ovals filled with colors), and all
the decision makers who have established connectivity to an
information net can access those information over the net.
However, information nets have no support for information
exchange among agents except for information sharing.

If we also view the information sources in Figure 1
as agents, the information nets become a richer concept–
‘multicast channels’ [1]. All messages exchanged on a
channel can be heard by everybody tuned on the channel

although some are not necessarily the intended audience.
However, this by itself is not a new idea and has already
been employed in the locker-room agreements–a communi-
cation protocol proposed for periodic team synchronization
domains [20]. The novelty of channeled multicast is that
it organizes streams of messages by channels with themes,
and it supports a system development methodology where
an agent society can be organized in terms of conversation
roles and themed communication channels [3].
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Figure 1. Multi-party communication

A multi-party dialogue involves more than two conversa-
tion roles, and the roles played by an agent can change dur-
ing a dialogue [5]. In addition to the roles of speaker and ad-
dressee, the other roles include auditors (the intended listen-
ers), overhearers (the anticipated but unintended listeners),
and esvesdroppers (the unanticipated listeners). The exist-
ing work mostly focuses on the role of overhearer. In the
overhearing architecture [3], overhearer agents are used to
listen to one or more channels on behalf of subscribers, ana-
lyze the exchanged messages and selectively forward what-
ever information is relevant to the subscribers. Rossi and
Busetta sketches a rule-based approach [17] where a group
of agents by overhearing can conduct conversation state
analysis and social role recognition, based on landmark-
based representation of conversation protocols. Overhear-
ing is also used for group formation [15] and in formally
studying the conversation identification problem [10].

The benefits of multi-party communication are obvious:
less communication cost, easier to establish mutual agree-
ments (beliefs), better for enhancing social awareness of
others’ work progress and avoiding redundant assistance,
enabling unobtrusive observations, unsolicited suggestions,
and unplanned collaboration. In this paper, we specifically
leverage multi-party communication for enabling agents to
anticipate others’ information needs based on stepwise con-
versation recognition. Gutnik and Kaminka [10] have for-
mally studied the conversation recognition problem in an
overhearing setting, and explored the complexity of the al-
gorithms for handling lossless and lossy overhearing. How-
ever, for the purpose of our study, this work bears at least



two limitations. First, they assume the overhearers and
the conversation participants share the same collection of
conversation patterns. We drop this assumption—a group
of RPD-agents can have different expertises (experiences).
Second, it is astatic approach to conversation recognition
in the sense that the overhearer tries to determine a conver-
sation pattern based on afull sequenceof overheard mes-
sages. Quite differently, we believe a dynamic approach is
more useful: if an overhearer canstepwiselyrecognize the
pattern being used only based on the sequence of messages
exchanged so far, then the overhearer might be able to sat-
isfy the information needers before they actually initiate the
ensuing conversations, and hence could successfully termi-
nate the ongoing conversation beforehand. Moreover, it is
an open issue in Gutnik and Kaminka’s approach how to
determine the start and the end of a conversation. This is no
longer an issue if stepwise recognition is employed. In ad-
dition, Gutnik and Kaminka describe the joint conversation
states as a product of the members’ individual states. This
is criticized [17] because the exact members of a communi-
cating group are oftentimes unknown.

3. Representation of Conversation Patterns
and Conversational Experiences

3.1. Conversation Patterns

We extend Petri-nets model to represent abstract multi-
party conversation patterns.

Let Ω be a set of performatives. A multi-party conversa-
tion patternπ is a tuple〈P, T, F,Υ, Ψ, Γ, τ〉, where
• P is a finite set of token places;
• T is a finite set of transitions;
• F ⊆ (P × T )∪ (T ×P ) is a set of directed arcs connect-
ing places and transitions;
• Υ = Υ0 ∪ {∗}, where ‘∗’ represents the whole commu-
nicating group,Υ0 is a finite set of (agent) role variables
or role constraints. Variables inΥ0 are either mutable or
immutable. An immutable role variable retains its binding
throughout a conversation after it is bound to an agent, while
a mutable variable can take different bindings in its differ-
ent occurrences. A mutable variable is represented in a bar
notation (e.g.,m̄ is a mutable role variable). A role con-
straint inΥ0 is represented as a first-order formula;
• Ψ is a finite set of variables for performative arguments;
• Γ ⊆ T×Ξ, whereΞ is a set of transition labels of the form
〈ρ, ν1, · · · , νk〉, whereρ ∈ Ω, νi ∈ Ψ(1 ≤ i ≤ k), k is the
arity of the performativeρ. Variablesνi(1 ≤ i ≤ k) will be
replaced by domain-dependent wffs upon conversation in-
stantiation. For example,〈ask,X〉 is a transition label stat-
ing that the speaker is asking information aboutX. Given
any t ∈ T , assumeρ(t) returns the performative compo-
nent ofΓ(t);

• τ ⊆ F × Υ is a set of arc labels. For anyt ∈ T , let .t =
{〈p, t〉|p ∈ P, 〈p, t〉 ∈ F}, t. = {〈t, p〉|p ∈ P, 〈t, p〉 ∈ F}.
Let τ(.t) = {τ(λ)|λ ∈ .t}, τ(t.) = {τ(λ)|λ ∈ t.}. For
anyt, anyi ∈ τ(.t), andj ∈ τ(t.), their combination repre-
sents a communication act fromi to j of typeρ(t).
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Figure 2. (a) Proactive-Response Pattern πp,
(b) Bundle-Ask Pattern πb

Figure 2 gives two multi-party conversation patterns.
The Proactive-Response patternπp in Figure 2(a) starts with
an ‘ask’ fromi to j aboutX. Then,j either sendsX to i or
says sorry followed by another agentk sendsX to i. Next,
any listener can infer the potential information needs rele-
vant toX and then either sends the information toi or re-
quests another agent to send the information toi. The pat-
tern ends with an acknowledge fromi to the whole group.
The Bundle-Ask patternπb in Figure 2(b) also starts with
an ‘ask’ from i to j about X, whereX can be a con-
junction expression. However, different agents, according
to their expertise, may have different conjunction compo-
sitions forX. For example, from agentm’s viewpoint, it
could beX = X1 ∧Y2, while from agentn’s perspective, it
could beX = X1 ∧X2 ∧X3. Upon receiving an ask mes-
sage, each group member will send whatever it has based
on its decomposition ofX until receiving an acknowledge
from i. The bindings for mutable role variables (e.g.,m and
k) can be different for different iterations.

We assume performative arguments are represented by
first-order expressions (predicates, conjunction). LetΦ be
the set of first-order wffs regarding the domain problem un-
der concern. An instantiation of a conversation patternπ
with respect to a group of agentsG is a tuple〈π, $, γ, υ〉,
where$, γ, andυ give the current token configuration, the
bindings for role variables inΥ0 (valued overG), and the
bindings for performative arguments (valued overΦ), re-
spectively. For instance,$(πp) = [0100000] means only
place 2 of patternπp holds a token. A role variable can be
bound to a subset ofG, and∗ is always bound toG, the
whole communicating group. We use notation likei : A to
denote thati is bound toA; wheni is a constant, it meansi
is replaced byA; it is a pointwise binding when bothi and
A are vectors.



Example: AgentsA, B, C, andD as a group needs to
monitor the airspace in the vicinity of an aircraft carrier, and
to decide how to respond to the incoming air targets. Sup-
poseC has the following knowledge:
ThreatLevel(?a,High) ← Type(?a,Military)∧

ThreatBySD(?a,High) ∧ ThreatByAR(?a,High),
Type(?a,Military) ← IFF (?a, > 1Mhz ),
ThreatBySD(?aHigh) ← Speed(?a, > 400mph)∧

Direction(?a, < 20deg) ∧ IFF (?a, > 1Mhz ),
ThreatByAR(?aHigh) ← Angle(?a, [−5deg , 5deg ])∧

Range(?a, < 80miles) ∧ IFF (?a, > 1Mhz ).
Below is a possible conversation following the Proactive-
Response pattern, where
the role mapping is{i : A, j : B, k : C, m̄ : C, n̄ :

−−→
B, D},

the argument binding is{X : Type(a107, ?s),
Ȳ :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ThreatBySD(a107, ?t),ThreatByAR(a107, ?t)}.

Here, we usēv :
−−−−−−−→
X1, X2, · · · to represent thatv is bound to

the values of the sequenceX1, X2, · · · , one at a time.

A: Ask B, “tell me Type(a107, ?s), I need it to judge
ThreatLevel(a107,High)–whether there is a hight
threat from the aircrafta107 ”

B: Sorry, I don’t knowType(a107, ?s)
C: Send A, “Type(a107,Military)”
C: Request B, “SendThreatBySD(a107, ?t) to A, cause

A must be unaware ofIFF , consequently A must need
this information to judgeThreatLevel(a107,High)”

B: Send A,ThreatBySD(a107,High)
C: Request D, “SendThreatByAR(a107, ?t) to A, cause

A must be unaware ofIFF , consequently A must need
this information to judgeThreatLevel(a107,High)”

D: Send A,ThreatByAR(a107,High)
A: Ack to all, “you are so helpful”

Such an abstract model offers us several benefits. First,
the use of role variables and role bindings allows us to ex-
press a wide range of multi-party conversations. (a) If an
‘in’ arc and an ‘out’ arc of a transition are labeled with
the same role variable, the transition can be used to ex-
press self-addressing messages such as “think aloud”; (b)
If the role variable of an ‘in’ arc of a transition is bound to
a set of agents, it can represent performatives with a group
of initiators such as “We announce that ...”; (c) If an ‘in’
(or ‘out’) arc of a transition is labeled with a role constraint
rather than a role variable, it can specify implicit conver-
sation participants such as “whoever committed to task X
needs to abandon it”. Second, unlike the landmark-based
representation of conversation, our model not only captures
the types of performatives involved in a conversation, it also
captures their temporal relations in terms of transition se-
quences. This enables us to design algorithms for recog-
nizing the patterns being used and for offering proactive
assistance regarding the information needs as the conver-

sation further evolves. Third, the model allows us to ex-
plore a stepwise approach to conversation-pattern recogni-
tion, where both performative types and domain-specific in-
formation types are taken into account.

3.2. Conversational Experiences

An experience in the terminology of RPD [12] represents
an agent’s past response to a certain situation, consisting of
four parts: relevant cues (what to pay attention to), plausi-
ble goals (which goals make sense), expectancy (what will
happen next), and course of action (what actions worked in
that situation).

We denote a conversational experience (i.e., an experi-
ence of conversation)ei by a tuple〈Ci, Ei, Gi, Ai〉, where
• Ci is a sequence of messages of form〈θs, θa, ρ, ν[1..k]〉,
whereθs is the sender,θa is the addressee,ρ is the per-
formative, andν[1..k] are the performative arguments. By
default, the first element,ν[1], is the ‘ontological’ ob-
ject of the performative. For instance, given message
〈A,B,Ask ,Loc(e2, ?x, ?y), C〉, ν[1] = Loc(e2, ?x, ?y).
Assumeν[1].type andν[1].var return the type and the ar-
gument list of ν[1], respectively. For the above exam-
ple, ν[1].type = Loc, ν[1].var = (e2, ?x, ?y). We also
use ν[2..] to refer to the performative arguments exclud-
ing ν[1]. Messages inCi are cues to be used in “cue
matching” to determine whether this experience is applica-
ble to the current conversation situation;
• Ei is a set of expectancies of form〈π, $〉, whereπ refers
to the conversation pattern that, upon instantiated, matches
with Ci, and$ gives the token configuration of the con-
versation pattern after matching the sequenceCi. Hence,
π, $, and the variable bindings resulted from conver-
sation matching together determine the expectancy with
respect toπ — the rest sequence of messages to be ex-
changed as the conversation further evolves;
• Gi is a set of goals denoted by first-order formu-
las. Typically, Gi is domain-dependent. For conversa-
tional experiences,Gi is null before a recognition (i.e.,
the process of finding similarity between the current sit-
uation and past experiences), populated with goals (e.g.,
ThreatLevel(a107,High) in the example of last sec-
tion) during a recognition, and passed to the recognizing
agent after a recognition.Gi provides acontextfor antici-
pating the future information needs of teammates;
• Ai is a set of communicative acts for evolving the current
conversation or for suggesting solutions to future collabora-
tion opportunities (e.g., role allocation) based on the iden-
tified conversation pattern being used in the group. For ex-
ample, an overhearer (say C in the last example) may send
out a request on behalf of another team member, know-
ing that the team member itself would send out the same re-
quest as the situation further evolves. WhileEi can be used



to derive teammates’ information needs,Ai can be used to
satisfy others’ information needs; both are done in a proac-
tive manner.

For example, here are two experiences of agent C:
e1 = 〈C1, E1, ∅, A1〉, e2 = 〈C2, E2, ∅, A2〉, where
C1 = [〈A, B,Ask ,Type(a107, ?s)〉],
E1 = {〈πp, [0100000]〉, 〈πb, [010]〉},
A1 = {〈C, B, 3Request ,ThreatBySD(a107, ?t), A,

shareGround(Type,ThreatBySD)〉}
C2 = [〈A, B,Ask ,Type(a107, ?s)〉,

〈C, A,Send ,Type(a107,Military)〉],
E2 = {〈πp, [0001000]〉},
A2 = {〈C, D, 3Request ,ThreatByAR(a107, ?t), A,

shareGround(Type,TreatByAR)〉}, where
the third argument of3Request is shareGround(Type,
ThreatByAR)〉}, which gives the reason of performing the
third-party request:Type andThreatByAR share the same
ground (i.e.,IFF ).

Expectancy monitoring is one of the key features imple-
mented in RPD-agent to support adaptive decision makings
[6]. An expectancy states what will happen. An agent be-
comes more confident about its recognition (i.e., the iden-
tified experience once worked in a situation similar to the
current one) when it obtainspositiveevidences that can val-
idate the expectancies of the experience being considered.
On the other hand, when an agent gets anegativeevidence
that invalidates an expectancy, the agent has to reconsider
the current situation by either triggering a new recognizing
process or refining the current recognition.

To enable recognition refinement, the RPD-agents
use experience refinement relations to organize experi-
ences about conversation patterns. For any experiences
ei = 〈Ci, Ei, Gi, Ai〉 andej = 〈Cj , Ej , Gj , Aj〉, ei is re-
fined byej , denoted byei v ej , iff Ci ≺ Cj , where≺ is
a sequence prefix relation. Simply, an experience is a re-
finement of another if it considered more cues (typed infor-
mation exchange) in the recognition. Continuing the above
example,e1 v e2 holds, because ine2, more communica-
tive acts were observed.

4. Needs Anticipation By Overhearing

Collaborative story building in the RPD process can ben-
efit from multi-party communication in many ways. For
instance, allowing communications to have multiple ad-
dressees and listeners (overhearers) can help team members
sketch a local view of the development of the story being
built, can help others link pieces of information using lo-
cal expertise on information dependency, and can help oth-
ers collect negative/positive evidence about the hypothesis
being explored. In this paper, we only focus on the antici-
pation of others’ information needs based on stepwise con-
versation pattern recognition.
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Figure 3. Dismatched situations

We assume the group of agents involved in a multi-party
conversation (a) are cooperative, (b) have shared ontologies,
and (c) obey the ‘teleconference’ style of communication
(i.e., there can be at most one speaker at a time).

4.1. Stepwise Conversation Pattern Recognition

Instead of directly matching the observed message se-
quences with abstract conversation patterns, we explore an
approach to match the observed message sequences with
concrete conversational experiences, considering both per-
formative types and domain-specific information types.

Below, by ‘conversation’ we mean a sequence of mes-
sages that is an instantiation of some (multi-party) conver-
sation pattern. We useO = o1, · · · , ol to denote the se-
quence of observed messages, whereoi(1 ≤ i ≤ l) is of
form 〈θs, θa, ρ, ν[1..k]〉, whereθs is the sender,θa is the ad-
dressee,ρ is the performative, andν[1..k] are the performa-
tive arguments.ol is the latest message observed.

To matchO with the cuesCi of an experienceei, it is
necessary to consider the following situations (see Fig. 3):
(a) a sequence of observed messages can be the tangle of
two or more conversations; (b) only the projection of the ob-
served messages onto a subset of the communicating group
can match with a conversational experience; (c) only a sub-
section of the observed messages can match with a conver-
sational experience; and (d) the observed messages, after
being interpolated with other messages, can match with a
conversational experience.

The stepwise recognition algorithm given below has sev-
eral distinct features. First, it is a backward-matching al-
gorithm, starting from the last observed message (line 26).
This avoids the difficulty of determining the first message
in O that starts a new conversation. Second, it is a dy-
namic approach, allowing recognition refinement through
monitoring the development of the expectancies of experi-
ences inSk (lines 19–25). This is different from the static
matching considered by Gutnik and Kaminka [10]. Third,
the algorithm covers the four cases illustrated in Fig. 3 by
role-ignorance computing (line 3) and message-ignorance
matching (lines 9 and 14). The role-ignorance computing
complements Gutnik and Kaminka’s lost-role analysis [10]:
in our approach, messages inO from certain roles are virtu-
ally ignored in order to find a matching experience, while



Algorithm StepwiseRecognition
Input: O, //the sequence of observed messages

EKB, //the experience base
G, //the group of agents
>ε, //preset threshold for workable deviation
⊥ε //preset threshold for acceptable deviation

1. LetM be a list of subsets ofG, ordered by set size
decreasingly, whereM [0] = G

2. Fork = 0..|M |
3. Ok = O.ignore(G−M [k]) //cases (a), (b)
4. Sk = BackwardMatching(EKB, Ok)
5. η = min{δi|〈ei, δi, γi, υi, {πj , $j}〉 ∈ Sk}
6. If (η ≤ ⊥ε) Return(NeedAnticipate(Sk))
7. If (⊥ε < η ≤ >ε) Break //goto phase 2
8. If (η ≥ >ε)
9. Sk = IgnoredMatch0(EKB, Ok) //case (c)
10. η = min{δi|〈ei, δi, γi, υi, {πj , $j}〉 ∈ Sk}
11. If (η ≤ ⊥ε) Return(NeedAnticipate(Sk))
12. If (⊥ε < η ≤ >ε) Break
13. If (η ≥ >ε)
14. Sk = IgnoredMatch1(EKB, Ok) //case (d)
15. η = min{δi|〈ei, δi, γi, υi, {πj , $j}〉 ∈ Sk}
16. If (η ≤ ⊥ε) Return(NeedAnticipate(Sk))
17. If (⊥ε < η ≤ >ε) Break
18. end For
19.η1 = min{δi|〈ei, δi, γi, υi, {πj , $j}〉 ∈ Sk}
20.Repeat
21. η0 = η1

22. SR = RefineRecognition(Sk, O′) // new messages
23. η1 = min{δi|〈ei, δi, γi, υi, {πj , $j}〉 ∈ SR}
24. If (η1 ≤ ⊥ε) Return(NeedAnticipate(SR))
25.Until(η0 < η1) //then, start a new recognition process

Algorithm BackwardMatching
Input: EKB, O
Output: S = {〈ei, δi, γi, υi, {πj , $j}〉}

26. ES = MatchLast(EKB,ol)
27. For eachei = 〈Ci, Ei, Gi, Ai〉 ∈ ES
28. count = 0; W=null; V=null
29. While (O.hasMore() &Ci.hasMore())
30. 〈θo

s , θ
o
a, ρo, νo〉 = O.getLast()

31. 〈θc
s, θ

c
a, ρc, νc〉 = Ci.getLast()

31. If (ρo == ρc)
32. γi.addAll(θc

s : θo
s , θ

c
a : θo

a)
33. If (νo[1].type == νc[1].type)
34. υi.addAll(νc : νo)
35. else count = count +1
36. else count = count +1
37. end while
38. δi = count/(2 · |O|)
39. S[ei] = 〈ei, δi, γi, υi, Ei〉
40. end For
41. returnS

in the lost-role analysis, messages from certain roles are ac-
tually not captured inO due to network errors or some other
constraints. Message-ignorance matching is realized by Ig-
noredMatch0() and IgnoredMatch1(), which ignore certain
messages inO andCi (of an conversational experience), re-
spectively. Forth, the algorithm is adjustable. The match-
ing process is not run-to-completion, but controlled by two
preset thresholds⊥ε and>ε. NeedAnticipate() is triggered
whenever the least matching deviationη is no more than
⊥ε; the control goes to the refinement phase whenever
⊥ε < η ≤ >ε. Thus, the complexity of the algorithm de-
pends on the values of⊥ε and>ε, as well as the setM ,
which in practice is much smaller than2G after being con-
fined by heuristics.

The algorithms for IgnoredMatch0(), IgnoredMatch1(),
and RefineRecognition() are omitted due to space limit.

4.2. Needs Anticipation

Information needs are domain related; to anticipate oth-
ers’ information needs requires domain-specific inference
knowledge and the modeling of others’ situation awareness.

Algorithm NeedAnticipate
Input: S = {〈ei, δi, γi, υi, {πj , $j}〉}

1. For each〈ei, δi, γi, υi, Ei〉 ∈ S
2. For each〈πj , $j〉 ∈ Ei

3. PI=πj .ReifyPattern($j , γi, υi) //reified pattern
4. LetTI be the subsequent transitions of PI wrt.$j

5. For eacht ∈ TI

6. 〈ρ, ν[1..k]〉 = Γ(t)
7. If (ρ is ‘ask ’) & (self.know(ν[1]))
8. self.send(τ(.t), ν[1])
9. If (ρ is ‘send ’) & (self.know(ν[1]))
10. self.send(τ(t.), ν[1])
11.end For

NeedAnticipate() is only a skeleton algorithm for an
overhearer to anticipate and help with other teammates’ in-
formation needs. ReifyPattern() uses the bindingsγi, υi,
and the current token configuration$j to instantiate pattern
πj . PI isπj under the context w.r.t. message sequenceO; all
the transition labels and arc labels in PI are replaced accord-
ing to the bindingsγi andυi. Lines 7-8 deal with ensuing
‘ask’: the overhearer replies the ‘asker’ with what it knows;
Lines 9-10 deal with ensuing ‘send’: the overhearer pro-
vides the ‘receiver’ with what it knows. Codes can be added
to deal with other cases like ‘subscribe’ and ‘request’. In ad-
dition, the function know() in lines 7 and 9 can be extended
to cover more complicated cases such as indirect informa-
tion needs. For example, suppose agentA asks forK. An
overhearerC can sendK ′ to A, if it only knowsK ′, which
is indirectly related toK, say, by some inference rule.



5. Conclusion

Aiming for enhancing the capability of agents in proac-
tive information delivery, in this paper, (1) we proposed an
abstract model of multi-party conversations, where the use
of role variables and role constraints allows us to express
a wide range of conversation patterns; (2) we described a
novel approach to anticipating teammates’ future informa-
tion needs based on stepwise conversation pattern recogni-
tion. The backward-matching algorithm is a dynamic ap-
proach; it allows recognition refinement through monitor-
ing the development of the expectancies of the experiences
under concern and considering newly observed messages.

While pattern recognition and anticipation can also be
used in single-illocution communication, the novelty of our
approach is that, by taking advantage of the idea of multi-
party communication (especially the role of overhearer), it
encourages ‘joint’ contributions in the process of recogni-
tion refinement and needs anticipation.

This is our first attempt of integrating multi-party com-
munication into R-CAST [6]. Our next step is to empirically
study the effectiveness of the algorithms on the developing
of shared situation awareness and further to build a compu-
tational model for collaborative story building.
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