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Effective human teams use overlapping shared mental models for
anticipating information needs of teammates and for offering rele-
vant information proactively. The long-term goal of our research is
to empower agents with such “shared mental models” so that they
can be used to better simulate, train, or support human teams for
their information fusion, interpretation, and decisions. Toward this
goal, we have developed a team agent architecture called CAST
that enables agents to infer information needs of teammates, which
further enables agents to assist teammates by proactively deliver-
ing needed information to them. In this paper, we focus on two key
issues related to proactive information delivery behavior. First, we
model the semantics of proactive information delivery as an attempt
(called ProAssert), which extends the performative Assert in Joint
Intention Theory. Second, we introduce a decision-theoretic ap-
proach for reasoning about whether to act on a potential proactive
assert. Experimental results suggested that the decision-theoretic
communication strategy enhances the team performance. The for-
mal semantics and the decision-theoretic communication strategies
together provide a sound and practical framework that enables fur-
ther studies regarding proactive information delivery for supporting
the decision making of a team involving human and agents.

1 Introduction

Effective human teams use overlapping shared mental models for anticipat-
ing information needs of teammates and for offering relevant information
proactively. Agents empowered with such “shared mental models” can be
used to better simulate, train, or support human teams for their information
fusion, interpretation, and decisions. This is a highly challenging objective,
since the scope of shared mental model is very broad. For instance, shared
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mental model obviously includes shared ontologies about the problem do-
main, shared team goals or commitments, shared knowledge about the team
structure and the process of the team, etc.

Toward this long-term goal, in this paper, we focus on three issues re-
lated to shared mental model (SMM) for a specific assist behavior among
team members–proactive delivery of information to needed teammates be-
fore they request. Obviously, this assist behavior requires an agent to know
what information is needed by its teammates. Information needs, hence, be-
come a critical component of shared mental model that enables the proac-
tive information delivery behavior. However, it is desirable for an agent to
reason about, rather than just remember, information needs so that it can
modify or refine its anticipation about information needs of other team-
mates based on other more basic constructs in the shared mental model.
We address these issue in Section 3 by formally defining information needs
within the framework of the SharedPlan theory. The definition extends our
earlier work[19, 20] by distinguishing two kinds of information needs: infor-
mation that is needed for a teammate to perform its task, and information
that is needed by a teammate to protect (i.e., avoid conflict with) its goals.
This definition of information needs lays the foundation for developing al-
gorithms (e.g., the DIARG algorithm in CAST) for agents to dynamically
reason about information needs of their teammates.

Even if an agent can reason about information needs of its teammates,
such capability is not useful unless it can translate it into communicative
acts (i.e., proactive information delivery) that can benefit the team. Obvi-
ously, the semantics of such proactive communicative acts are much more
complicated than the typical performatives like Assert[1, 2], since they are
motivated by anticipations to the future. We argue in Section 3 that the
semantics of proactive inform action is different from that of a conventional
inform action in that it also include the speakers intent to communicate
about his belief regarding the recipients information needs. A benefit of
this formal semantics for proactive inform is that it enables agents to es-
tablish a communication protocol with two different kinds of reject reply:
(1) reject due to knowing conflicting information, and (2) reject due to not
needing the information. These two different replies, in turn, can be used
by agents to update their SMM about the teammates they tried to help.

Finally, agents need to choose proactive communication strategies in a
way that can benefit the team. Even a seemingly simple decision such as
“whether to proactively inform a teammate about information I” can be
complicated by several factors. First, the “value” of the information I may
be difficult to assess. Second, the agent may be uncertain about the out-
comes of communicating I vs. not communicating I, due to its incomplete
knowledge about the world. In Section 4, we propose a decision-theoretic
approach that addresses these issues by using a shared mental model that
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handles uncertainty. We have implemented this communication strategy
in the CAST agent architecture and evaluated it empirically by using a
scenario that involves two opposing agent teams. The evaluation result is
reported in Section 5.

2 CAST Overview

CAST (Collaborative Agents for Simulating Teamwork) is designed to en-
hance collaboration in a team that consists of both human agents and soft-
ware agents. Studies about human team have identified proactively offering
information needed by teammates as one of the key behaviors of effec-
tive teamwork. Such a behavior is based on a mental model shared among
members of the team. The main novelty of the CAST architecture, hence,
is that it enables agents not only to develop and update their shared mental
model but also to use such models for proactive information exchanges and
accomplishing other effective team behaviors.

The design of CAST architecture is guided by three objectives: scalabil-
ity, efficiency, and adaptability. Scalability is achieved using a high level lan-
guage (MALLET) for describing team task knowledge. Efficiency is realized
by algorithms that utilize the team task knowledge effectively. Adaptability
is accomplished by dynamic responsibility assignment built into the archi-
tecture. MALLET (Multi-Agent Logic Language for Encoding Teamwork)
is a high-level team knowledge representation language, which provides de-
scriptors for encoding knowledge about individual/team actions and plans,
as well as specifications of team structures (e.g., roles and responsibilities).
CAST is a domain-independent team-based agent architecture. The do-
main knowledge of CAST agents came from MALLET. Team knowledge in
MALLET is compiled into Predicate-nets, which are used by CAST kernel
for generating effective teamwork behaviors.

CAST kernel is composed of a set of algorithms that CAST agents use
to decide what actions (including communication actions) they will take
at each time step. All of the kernel algorithms rely on a computational
shared mental model of the team. Two novel algorithms of CAST are DRS
and DIARG. DRS dynamically selects agents for responsibilities in a team
plan based on constraints specified in the plan. DIARG identifies oppor-
tunities for proactive delivery of information needed by teammates. The
two algorithms together achieve efficiency (by sending information only to
those who need them) and adaptability (through constraint-based dynamic
responsibility assignments) for a team involving CAST.

The shared mental model of a CAST agent includes three components:
(1) the shared teamwork knowledge described in MALLET, (2) the shared
belief about responsibility assignment of the teammates captured in the
predicate net, and (3) the shared belief about the world, which is stored as
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Horn clauses in a Prolog-like knowledge base. The CAST kernel updates its
shared mental model through its sensing, communication, and coordination
with other agents. A more detailed description of CAST can be found in
[19].

3 Foundation of Proactive Information Delivery

In the following, let TA be a fixed set of agents in the team under concern.
We base our analysis on actions. Actions have various associated properties,
such as the collection of potential doers, the condition under which the
action can be performed, the consequences of performing it, etc. As in [7], we
use α, β, γ · · · to refer to actions, and assume a set of functions can be used
to obtain the various properties associated with an action. Specifically, we
use Actα, pre(α) and post(α) to return information regarding the potential
doers, the preconditions and effects of α, respectively. More specifically,
Actα returns a set of tuples in the form 〈Agi, leveli, Ti, Costi〉3, where Agi

is a set of agents capable of performing α, and includes only those agents
which really have contribution to the performance of α. Ti and Costi are
the time duration and cost for Agi to perform α, respectively. The value
of leveli is either basic or complex [7], specifying whether α is basic or
complex wrt Agi. If leveli is basic, the action is performable at will with
no further decomposition or planning, and Agi = {G} must be a singleton,
i.e., agent G ∈ TA can do α individually. When Agi is not a singleton, then
α is a multiple agent action for the agents in Agi. A complex action (action
expression), being fully instantiated, is a sequence of basic-level (primitive)
actions satisfying certain properties, which characterize what will happen
in each possible world. A recipe for action α is a specification of a group
of subsidiary actions at different levels of abstraction, the doing of which
under certain constraints constitutes the performance of α. Thus, a recipe
is in per se composed of an action expression and a set of constraints on
the action expression. By meta predicate Action(G, α) we mean G is a
candidate doer for (complex) action α.

As in the SharedPlan theory, we use modal operator Do(G, α, t, Θ)
to denote that G(a group or a single) does(did) (complex) action α at
t under constraints Θ. Bel and MB are standard modal operators for
belief and mutual belief, respectively. unknown(A, p, t) , ¬Bel(A, p, t) ∧
¬Bel(A,¬p, t), which means that agent A does not know (hold any belief
about) the state of p at time t. There exist four kinds of intentional atti-
tudes. Int.To(G, α, t, tα, Cα) means G at t intends to do α at tα in the con-
text Cα, where Cα accounts for the reason of doing α. Int.Th(G, p, t, tα, Cp)
means G at t intends that p hold at t′ with Cp as its intentional context.

3 An action may be taken as a basic action for one agent, but may be a complex
action for another.
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Pot.Int.To (Pot.Int.Th) is similar to Int.To (Int.Th) except that it could
not be evolved into Int.To (Int.Th) before being reconciled with the al-
ready adopted intentions-to (intentions-that). Should there be any conflicts,
Pot.Int.To (Pot.Int.Th) will be dropped. Int.To is re-defined in [18] to
embed pre-information checking.

3.1 Anticipate Information Needs of Teammates

The most challenging issue in enabling agents to proactively deliver in-
formation to teammates is for them to anticipate information needs of
teammates. This is challenging because anticipating the information needs
of teammates requires a shared mental model about their responsibilities,
their goals, and their belief, all of which can be difficult to predict due to
the dynamic nature of the environment.

There are at least two types of information needs. The first type of
information needs enables an agent to perform certain (complex) actions,
which contributes to an agent’s individual commitments to the whole team.
We call this type of information need action-performing information need.
The second type of information need allows an agent to protect a goal from
potential threats that may result in a conflict with the goal. Knowing such
information will help teammates to handle threat to the team goals. Thus,
we call this type of information need goal-protection information need. For
instance, suppose fighters are responsible for protecting bombers which have
a goal of destroying the enemy base. The dynamic locations of enemies
are action-performing information for fighters, since prior to performing
firing, the fighters have to know where the targets are. The same kind of
information is goal-protection information for bombers, since if the bombers
are unaware of the approaching enemies, they might be destroyed from the
flank and the mission might become impossible.

Next we give the definition of information needs in terms of the mental
states and capability of an agent. Meta-predicate Need(A, I, t) is used to
denote the fact that agent A needs information I at future time t. Instead
of defining Need directly, we’d rather define it in the contexts of beliefs.

Definition 1. ∀A, B ∈ TA, I, t, t′ ≥ t·
Bel(A,Need(B, I, t′), t) , Bel(A,¬Bel(B, I, t′), t)∧
((∃α, t0 ≤ t ·Action(B, α) ∧Bel(A, Int.To(B, α, t0, t

′, Θα), t)∧
(Bel(A, (I = pre(α)), t)∨

(∃β ·Action(B, β) ∧Bel(A, (I = pre(β)), t)∧
(∃tβ < t′· Bel(A, (Do(B, β, tβ , Θβ) ⇒ pre(α)), t)∧
Bel(A,∃Rβ · CBA(B, β, Rβ , tβ , Θβ)), t)))))

∨(∃GR ⊆ TA · (A ∈ GR) ∧ (B ∈ GR)∧
Bel(A, ∃t1, C1 · Int.Th(GR, φ, t, t1, C1), t)∧
Bel(A,¬Bel(B, I, t′) ⇒ ¬φ, t))).
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That is, A at t believes B will need I by t′ means, at t agent A believes
either one set of the following facts. (1). B will not believe I at t′, B intends
at t0 to do some actions α at t′, and I is exactly the pre-condition of α; (2).
B will not believe I at t′, B intends at t0 to do some actions α at t′, and I
is the pre-condition of some other action β, the performance of which could
lead to pre(α), and B can bring about β by following some recipes 4; (3).
B will not believe I at t′, both A and B belong to the same (sub-)team,
the goal of which is φ, but if B could not get I at t′, the goal becomes
impossible.

The following axiom plays a key role in connecting information needs
with proactive communication actions. It says that, when an agent has
realized (been told) that another agent might need a piece of information,
it will generate an intention-that to try to provide help. We use predicate
needs(B, I) to denote the context for such intention, which is generated for
the reason that B will need I.

Axiom 1 ∀A,B ∈ TA, I, t, t′ > t· Bel(A,Need(B, I, t′), t)
⇒ Int.Th(A,Bel(B, I, t′), t, t′, needs(B, I)).

3.2 Attempts as Certain Mental States

Following Cohen and Levesque’s work[1, 4], we attempt to bridge the joint-
intention theory and the SharedPlan theory by the semantic analysis of
“communicative acts”, and show that the treatment of performative-as-
attempt can be successfully carried out in the framework of the SharedPlan
theory. However, in our analysis, an Attempt will no longer be treated as
a complex action expression, but be treated as a view, or a slice of the
current mental state of the performers. Based on this, we formally define
the semantics of a new kind of performatives– proactive assert(tell), which is
prevalent in teamwork domains involving both human and software agents.

In [1] attempt was defined as a complex action expression. Agent x
attempts to achieve P via achieving Q by doing e means just prior to e, x
chooses that P should eventually become true, and intends that e should
produce Q relative to that choice. That is, before doing e, x’s mental state
has to satisfy certain pre-conditions.

Rather than defining an attempt as a complex action expression, we
treat it as a certain slice of mental state which could legally lead to the
commitment of doing the associated event.

Definition 2. Attempt(x, e, P, Q, θ, t, t′) ,
¬Bel(x, P, t)∧ Int.Th(x, P, t, t′,¬(Bel(x, P, t) ∨ θ))∧
4 Note that β might be a complex single action or a multiple action. Hence B

might not be able to get pre(α) until all the constituent actions of β have been
performed.
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Bel(x, post(e) ⇒ Q, t)∧
(∃t1 · (t ≤ t1 < t′) ∧ Int.To(x,Exec(x, e, t1), t, t1,

Int.Th(x, P, t, t′,¬(Bel(x, P, t) ∨ θ)))).

That is, at time point t, agent x attempts to make P hold at t′ via
achieving Q by doing e relative to the escape condition θ means, agent x
does not believe P hold currently, it personally knows Q follows from the
effects of e, it intends that P hold at t′ relative to θ and the fact that P
doesn’t hold currently, and it intends to execute e before t′ relative to its
intention that P hold at t′.

Since intentions are persistent by default, if an agent makes an attempt,
it will keep the attempt until either t′ comes, or it comes to believe P
hold by some effort, or the escape condition becomes true. In any case,
all the constituent intentions of the attempt will be dropped because the
corresponding constrains do not hold any longer.

The semantics of performatives are given by choosing appropriate for-
mulas (involving mutual beliefs) to substitute for P and Q in the definition
of Attempt.

3.3 Proactive Assert

There are two restrictions in the semantics of Assert[17]. First, since the
escape condition of Assert(s, a, p, t, t′) is given as ∃t1 · (t ≤ t1 ≤ t′) ∧
Bel(s,Bel(a, ¬p, t1), t), s will not assert p to a, if s currently believes
Bel(a,¬p, t1) at some time t1 between t and t′. However, in some cases
an agent wants to change the other’s mind when this agent believes the
other agent is holding false beliefs. Second, when an agent refuses an as-
sertion about p, it is assumed that the refusal is only due to the fact that
the receiver does not want to change its current belief about ¬p. However,
an agent might anticipate the future information needs of the other team-
mates, and proactively assert some relevant information to the needer. In
such cases, the receiver might refuse an assertion if it believes it will never
need the information. Such kind of refusal should convey some meta-level
information (above p) to the asserting agent, which could accordingly revise
or refine its meta-level knowledge to improve its ability of anticipation in
the future. Thus, as a complementation to Assert, we need to define a new
elementary performative ProAssert, which will be based on the informa-
tion needs among teammates.

Definition 3. ProAssert(s, a, p, t, t′) , Bel(s, p, t)∧
Bel(s,Need(a, p, t′), t)∧ Attempt(s, e, ∃t0 · (t ≤ t0 ≤ t′) ∧Bel(a, p, t0), ∃t′′ ·
(t ≤ t′′ ≤ t′) ∧ MB({s, a}, P, t′′), θ, t, t′), where P = ∃tb · (t′′ ≤ tb ≤ t′)∧
Int.Th(s, Bel(a,Bel(s, p∧Need(a, p, t′), t), tb), t, tb, ¬Bel(s, ∃ta·Bel(a, p, ta), t)),
θ = ∃t1 · (t ≤ t1 ≤ t′) ∧Bel(s,¬Need(a, p, t1), t).
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That is, agent s at t pro-asserts p to a by t′ is an attempt with a’s belief
about p by t′ as the ultimate goal, and the honest goal is to bring about
mutual beliefs that s intends that a believes “s believes p and s believes
a will need p at t′”. ProAssert(s, a, p, t, t′) will not hold when s comes to
believe ¬p, or when s comes to believe that a will not need p by t′.

Similar to Assert, upon receiving a pro-assertion about p, the receiver
will deliberate on whether to accept it or not. If it decides to accept p, it
will come to believe p, and the acceptance should free the speaker from
maintaining the already achieved intention. If it decides to refuse p, it is
actually trying to inform the asserting agent that it does not need p.

From the definition of Need, it can be inferred that a’s information
needs was actually generated by a’s intention to do some action at t′. s
got to know a’s information needs by reasoning about a’s mental state
according to the current team plan shared with a. For instance, suppose all
the fighters and scouts share the same team plan to destroy enemy base,
where the scouts keep searching for the location of the enemy base, and
the fighters will move towards the enemy base as soon as they get to know
such information. In such scenario, the scouts could get to know fighters’
information needs by checking their shared team recipe and the current
positions of the fighters in the recipe, and then commit to ProAssert. 5

The following theorem can be proved by using Axiom(1) and the help
axiom in the SharedPlan theory. It says that if agent A knows B will need
I at t′, A will try to provide help by pro-asserting I to B.

Theorem 1. ∀A,B ∈ TA, I, t, t′ > t·
Bel(A,Need(B, I, t′), t)∧ Bel(A, I, t) ∧
(6 ∃t0 · (t0 ≤ t) ∧Bel(A,ProAsserted(A, B, I, t0, t

′), t)) ⇒
(∃tt · Pot.Int.To(A,

ProAssert(A, B, I, tt, t
′), t, tt, needs(B, I))).

4 A Decision-theoretic Communication Strategy for ProAssert

Communications often carry certain cost. Therefore, an agent needs to eval-
uate the tradeoff between the cost and the utility of proactive communica-
tions before actually doing it. Furthermore, an agent is also required to be
able to deal with uncertainties, since it may only have incomplete informa-
tion about the world, the potential cost and the potential utility of proactive
information delivery. Accordingly, it may hold wrong models of teammates.
Therefore, we propose a decision-theoretic approach for an agent to reason
about whether to reconcile its potential-intentions regarding ProAssert to
5 Here, we are assuming all the agents know the preconditions and effects of all

the domain actions. If domain information is distributed, this assumption can
be weakened later by allowing agents to communicate the preconditions and
effects of the immediate next level actions as we did in [17].
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intentions to do it, once it receives a piece of information that matches the
need of its teammates.

As shown in theorem 1, if agent A believes B will need I at t′, A will try
to provide help by adopting an potential intention-to regarding ProAssert.
Whether such potential intentions-to can be reconciled to intentions-to de-
pends on agents decisions based on the state of the environment and the
mental state of the decision-maker themselves. One of the pre-conditions
for agent A to hold a potential intention to ProAssert I to B is that
Bel(A,Need(B, I, t′), t) must hold. However, most of such information needs
come from A’s anticipation based on B’s lacking of expected behavior
or lacking of sufficient observability6, and such anticipations about team-
mates might be wrong. Hence, actually each information need is asso-
ciated with a probability, which measures to what degree A’s belief of
Bel(A,Need(B, I, t′), t) conforms to the real state of Need(B, I, t′).

Even if B really need I at t′, i.e., Need(B, I, t′) holds, B might have
already known I before t by whatever means that is out of A’s anticipa-
tion.That is, it might be the case that A spends efforts and time in vain to
ProAssert I to B, who has already got information I from other sources.
Hence, when A decides to reconcile its potential intentions to intentions
with respect to pro-asserting information I to B, it should also consider
the probability of Bel(B, I, t). Since our agents assume beliefs persist on
default when making decisions, and they always try to maintain those be-
liefs that will be useful in the future, agent A will not perform ProAssert
if it believes B currently also believes I (so that B will satisfy its future
needs by its own).

ProAssert
(A, B, I,

t,t')
 need(B,I, t')

~need(B, I, t')

p

~ProAssert (A, B, I, t,t')

Bel(B,I,t)

~Bel(B,I,t)
q

0

U(I)-Cm

U(I)-Cm

U(I)

need(B,I, t')

~need(B, I,
t')

p
Bel(B,I,t)

~Bel(B
,I,t

)
q

0

-Cn

Cost: Cc

Cost: 0

rewards

1-q

1-q

1-p

1-p

Fig. 1. Decisions on ProAssert under Uncertainty

6 There are cases that A get to know B’s information needs through being in-
formed by B.
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4.1 Decision Analysis for ProAssert

As explained above, from Pot.Int.To(A,ProAssert(A,B, I, t, t), t, t′, needs
(B, I)) to Int.To(A, ProAssert(A,B, I, t, t′), t, t′, needs(B, I)), agent A needs
to make decisions based on the communication cost Cc for performing
ProAssert, the benefits UI of information I, the probability p of needs(B, I, t′),
and the probability q of Bel(B, I, t).

Figure 1 shows the decision tree for the agent to decide whether to
ProAssert information I to a teammate. Rewards and costs are measured to
the whole team. There are two choices P (ProAssert with communication
cost Cc) and NP (¬ProAssert with communication cost 0). If agent A
chooses P , there are three possible outcomes. The first possible outcome is
that Need(B, I, t′) holds with probability p and ¬Bel(B, I, t) holds with
probability q. In such case the reward to the team is U(I), the utility if
information I. The second is that Need(B, I, t′) holds with probability p
and Bel(B, I, t) holds with probability (1−q). In such case the reward to the
team is U(I)− Cm, where Cm is a penalty for sending information that B
already known. And the third is that ¬Need(B, I, t′) holds with probability
(1 − p), while the reward to the team also reduces to U(I) − Cm. If agent
A chooses NP , there are also three possible outcomes. The first possible
outcome is that Need(B, I, t′) holds with probability p and ¬Bel(B, I, t)
holds with probability q. The reward to the team in such case is 0. The
second is that Need(B, I, t′) holds with probability p and Bel(B, I, t) holds
with probability (1 − q), the reward to the team reduces to −Cn since B
needs I but A does not pro-assert I. And the third is that ¬Need(B, I, t′)
holds with probability (1 − p), where the reward to the team is 0 since B
does not need I.

The final choice of ProAssert(A,B, I, t, t′) or ¬ProAssert (A,B, I, t, t′)
is based on their expected utility. The expected utility EU(P) of P is U(I)+
Cm×p×q−Cm−Cc, while the expected utility EU(NP) of P is −Cn×p×q.
The agent will choose the one with the higher expected utility. Hence, agent
A commits to ProAssert iff EU(P ) > EU(NP ).

We have shown formally in Section 3.2 that there are two types of in-
formation needs: action-performing information needs and goal-protection
information needs. The calculation of the expected utilities of ProAssert
motivated by these two types of information needs are different. The for-
mer assesses the utility U(I) of information I from the utility of action
enabled by the communication, whereas the latter uses the negative utility
of failing the related goal as Cn for accessing the expected utility of NOT
communicating.

4.2 Factors for Decisions about Proactive Communications

The communication cost Cc for performing ProAssert, the benefits U(I)
of information I, the probability p of Need (B, I, t′), and the probability q
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of Bel(B, I, t) can be computed approximately based on the shared domain
knowledge, the structure of team plans, and the progress of teammates on
the shared team plans.

Communication Cost We take communication cost as being composed
of resource cost (network, energy, etc.) and the potential risks of being over-
heard by opponents. The resource cost is a constant, while communication
risk is dynamically changed, and dependent on domains. Take a battle-field
domain as an example, there are situations when a scout communicates
with his teammates, his location might be detected by enemies. In these
situations the scout will have a higher communication risk, which can be
evaluated based on the utility US of the scout himself, the probability pd

for him to be detected (may be inverse to the distance between him and the
detecting source), and the probability pk for him to be killed (depends on
the distance between him and the closest enemy, and the fighting power of
the enemy). Hence, the communication risk will be C0 + US · pd · pk, where
C0 is the constant resource cost.

Probability of Need(B, I, t′) For the action performing-information, a
decision-maker could figure out the potential information needers by check-
ing the roles played by its teammates in the current active team plan [19].
Information requirement has been defined for each action type. In a team
plan, the doer (or doers for joint action) of an action is either specified
explicitly or assigned by means of dynamic agent binding (select actual do-
ers from candidates who are capable to do the action). In the first case,
The probability of Need(B, I, t′) is either 0 or 1, since it is easy to check
if B is one of the needers of information I. In the second case, suppose
the number of candidates is Num, the probability of Need(B, I, t) is either
1/Num or 0, depending on whether B is a candidate. The set of candidates
for an action is contractible as the plan evolves[19], so the probability of
Need(B, I, t) is also changed from time to time.

Its a bit more complicated to determine the probability of Need(B, I, t′)
when I is a goal-protection information, since it’s dependent on the domains
and contexts. For instance, suppose a scout observed that an enemy fighter
is chasing after its team member F1, and another teammate F2 with weak
fighting power is moving toward the enemy fighter. In this scenario, the
scout will believe the enemy fighter has more threat on F2 than F1, since
F2 is more likely to be killed. Since the location information of the enemy
fighter is critical for F2 to survive, the probability of Need(F2, I, t′) should
be higher than that of Need(F1, I, t′).

Probability of Bel(B, I, t) The probability of Bel(B, I, t) is evaluated
based on the observability of the decision-maker, and whether I is static
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information or not. (1). If decision-maker A has observed B is doing another
action that also requires I, A could conclude that B knows I with a higher
probability. (2). If A knows B’s observability as prior knowledge, and from
the current context A believes that B could observe I, then A will assume
B knows I with a higher probability. (3). If I is a static information, and
A knows it has told I to B, or A has ever received I from B before, the
probability of Bel(B, I, t) is 1. (4). In other cases, A could assume the
probability of Bel(B, I, t) is very low.

Utility of Information The utility of a piece of information refers to the
sum of the gain of knowing it and the lost of unknowing it, both of which
are evaluated from the team’s perspective. For instance, suppose a scout
observes an enemy fighter approaching one of its teammates, the utility of
enemy fighter is UW , and the utility of his teammates is UF . When the
scout tells the location of the enemy fighter to the teammate, let the prob-
ability of the teammate’s being destroyed by the enemy fighter be pf , the
probability of the enemy fighter’s being destroyed by his teammate be pw.
When the scout does not tell the location information to the teammate, let
the probability of the teammate’s being destroyed be pe, and the probabil-
ity of the enemy’s being destroyed be pn. Then, the utility of the location
information of can be computed by (UW · pf −UF · pw + UW · pe−UF · pn).

To some degree, the utility of information depends on the specific do-
main problems, and is usually evaluated case by case. The Information that
is changing from time to time has short term value, i.e., the utility of such
information has to be evaluated whenever the information is considered.
The information that is unchangeable or not changed frequently has sta-
ble utility, which, in most cases, could be pre-determined offline and only
re-evaluated whenever necessary.

5 Experiments

In [20] we reported the experiment results that show teams using proac-
tive information delivery perform much better than teams not using it.
To further improve the performance of teams using proactive information
delivery, we have extended the CAST architecture with decision-theoretic
proactive communication strategies. We have also implemented a test-bed
to evaluate different communication strategies for pro-assert.

The test-bed is composed of two opposing agent teams, the blue team
and the red team. In a 21 × 21 grid world, the goal of the blue team is to
destroy the home base of the red team, while the red team tries to protect
their base by attacking any approaching agents of the blue team. Agents
in the blue team could play one of three roles: the scout, who can sense
but can not shoot, the fighter, who can shoot but can not sense, and the
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bomber, who can only bomb the enemy base. The roles of the blue team
are designed to maximize their needs for proactive communications. To
complete the mission, at least 4 bombers have to surround the enemy base
and perform a joint-action called co-fire to the enemy base.

The behavior of the blue team is governed by team plans and individual
plans specified in MALLET, along with other related teamwork knowledge.
Being informed about the location of the enemy base, the bombers will move
toward the enemy base and try to synchronize co-fire action to complete the
mission, while the unassigned fighters will also move toward the enemy base
to protect bombers whenever needed. When informed about the location of
a moving (red team) enemy, a dynamically assigned fighter (based on the
team’s SMM about the constraint of the assignment) will move toward the
enemy’s location and shoot at it, while the bombers will try to move away
from the threat.

Each agent in the red team can sense as well as shoot. To introduce risks
for communications, the enemy base has a communication detection range.
If a blue team agent speaks inside the communication detection range, it
can be detected. The likelihood of this detection reduces linearly as the
distance to the enemy base increases.

We devised two sets of communication strategies for the blue team,
which are listed in Table 1. Both strategies adopt a decision-theoretic ap-
proach for the scout in the Blue Team to decide whether to proactively
inform fighters when the scout detects an enemy agent. The two strategies
differ, however, on how they handle the decisions for whether to proactively
inform bombers. The strategy S1 always informs the closest bomber about
the enemy detected so that the bomber can escape. The strategy S2 adopts
a decision-theoretic approach for deciding on whether to inform the closest
bomber about the enemy detected. It should be noted that informing fight-
ers proactively is driven by action-performing information needs, whereas
informing bombers proactively is motivated by goal-protection information
needs. Hence, this experiment covers both types of proactive communica-
tions discussed in previous sections.

Table 1. Comm Strategies used for Team A

Strategy Inform Fighters Inform Bombers
S1 Decision-theoretic always
S2 Decision-theoretic Decision-theoretic

The following results are based on the following parameter settings of the
test-beds. The number of enemy agents is 5, the number of scouts, fighters
and bombers in the blue team is 3, 4, and 6 respectively. The sensing range
of scout is 6. The shooting range of fighters are 8, with an effect of radius 1.
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The sensing range of the enemy agents is 1, while their shooting range is 6
with an effect of radius 1. We randomly generated 50 initial configurations
for the locations of agents in both teams. The enemy base is always in the
center of the grid.

Table 2. Experimental results for Team A

Communication range Strategy S1 Strategy S2
4 4 6
5 2 7
6 6 13
7 5 5
8 5 11

Table 2 summaries the number of successfully completed missions (out
of a total of 50 missions) for the blue team using the two communication
strategies. The independent variable of the experiment is communication
detection range of the enemy base. As shown in the table, strategy S2
outperforms strategy S1. This experiment result suggests that decision-
theoretic communication strategies can be effective for team-based agents to
decide on whether to proactively deliver needed information to teammates.

6 Comparisons and Conclusions

Communication plays an essential role in the forming, evolving, and ter-
minating of both joint intentions and shared plans. Hence the semantics
of communicative actions (performatives) is critical not only for agent de-
signers to understand the requisite mental state prior to the performance
of a communicative act by the speaker, but also for the listener to assume
certain mental state of the speaker must hold, which facilitates to achieve
certain mutual beliefs among them. The semantics of communicative acts
are initially defined in terms of beliefs and intentions from the perspective of
each individual agent[1, 2, 4], and later from a team’s point of view[5, 3, 11].
Compared with Cohen and Levesque’s work, in our analysis, an Attempt is
no longer treated as a complex action expression, but is treated as a view
of the current mental state of the performer. Consequently, the semantics
of a performative is not only defined in terms of the mental state of the
performer, it actually is no more than that.

In the original SharedPlan theory[8, 6, 7], communicative acts are treated
implicitly as normal actions, and are raised as help behaviors in establish-
ing requisite mutual beliefs and ensuring the satisfaction of intentions-that.
However, the semantics of performatives are missing there. The work in this
paper actually shows that the treatment of performative-as-attempt can be
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successfully carried out in the SharedPlan framework. This is useful on its
own, since the joint-intention theory and the SharedPlan theory are proved
to be equivalent in specifying the semantics of communication primitives.

Tambe adopted a hybrid approach in implementing the communica-
tion mechanisms for STEAM[16]. In STEAM, Communication is mainly
raised (implicitly) from the prescriptions of joint intentions, while addi-
tional communication is generated by checking the explicit declaration of
information-dependency relationships among domain actions. Our work in
this paper, however, is focusing on giving semantics for the underpinning
communicative acts in the framework of SharedPlan theory, by which we
hope all the communicative actions among a team could be raised explicitly
and uniformly as a kind of help behaviors.

In [13], a communication paradigm was proposed for periodic team syn-
chronization (PTS) domains with only a single, unreliable, low-bandwidth
communication channel for agents that might belong to adversary teams.
However, they are more concerned about dynamic team formation in a class
of PTS domains, while this paper is focusing on the semantics of commu-
nication acts, and how they are adopted as help behaviors in supporting
team activities. No doubtly, the treatment of communication acts as help
behaviors is useful in dynamic team formations.

In addition, we introduced a decision-theoretic approach for reasoning
about whether to act on a potential proactive assert. Experimental results
suggested that the decision-theoretic communication strategy enhances the
team performance. The formal semantics and the decision-theoretic com-
munication strategies together provide a sound and practical framework
that enables further studies regarding proactive information delivery for
supporting the decision making of a team involving human and agents.
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