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Abstract

Various techniques have been proposed to automate

the weight selection process in optimal control problems;

yet these techniques do not provide symbolic rules that

can be reused. We propose a layered approach for weight

selection process in which Q-learning is used for select-

ing weighting matrices and hybrid genetic algorithm is

used for selecting optimal design variables. Our approach

can solve problems that genetic algorithm alone cannot

solve. More importantly, the Q-learning’s optimal policy

enables the training of neuro-fuzzy systems which yields

reusable knowledge in the form of fuzzy if-then rules. Ex-

perimental results show that the proposed method can au-

tomate the weight selection process and the fuzzy if-then

rules acquired by training a neuro-fuzzy system can solve

similar weight selection problems.

1. Introduction

In traditional optimal control and design prob-
lems [6], the control gains and design parameters are
derived to minimize a cost function reflecting the sys-
tem performance and control effort. One major chal-
lenge of such approaches is the selection of weighting
matrices in the cost function. Traditionally, select-
ing the weighting matrices has mostly been accom-
plished based on human intuition and through trial
and error, which can be time consuming and ineffec-
tive. Hence, various techniques have been proposed to
automate the weight selection process [1, 10, 9, 16, 2].
However, these techniques are not accompanied by a
learning process which can be used to solve a simi-
lar problem.
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We propose to model the problem of finding the opti-
mal weighting matrices as a deterministic Markov de-
cision process (MDP) [7]. A deterministic MDP is a
MDP in which the state transitions are determinis-
tic. Reinforcement learning (RL) techniques [11, 13, 4]
such as Q-learning [15] can be used to find the opti-
mal policy of the MDP. Modeling the problem as a de-
terministic MDP has the following benefits: (1) there
are abundant RL techniques to solve the MDP and au-
tomate the weight selection problem, (2) the optimal
policy computed by RL techniques can be used to gen-
erate fuzzy rules, which can be used in other weight se-
lection problems. Neuro-fuzzy systems such as adaptive
network-based fuzzy inference system (ANFIS) [3], can
be used to learn fuzzy if-then rules for the weight se-
lection problem using the training data obtained from
RL’s optimal policy.

To evaluate our method, we performed several nu-
merical experiments on a sample active-passive hy-
brid vibration control problem, namely adaptive struc-
tures with active-passive hybrid piezoelectric networks
(APPN) [14, 12, 5, 8]. These experiments show (1) our
method can automate the weight selection problem, (2)
fuzzy if-then rules are learned by training ANFIS us-
ing the training data acquired from RL’s optimal pol-
icy, and (3) the learned fuzzy if-then rules can be used
to solve other weight selection problems.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the proposed methodology. Section 3
explains a sample problem, namely, active-passive hy-
brid piezoelectric networks (APPN) for structural vi-
bration control. Section 4 discusses the experimental
results and Section 5 concludes the paper.

2. Proposed Methodology

In this section we first describe Markov deci-
sion processes and Q-learning. We then use an



active-passive hybrid control design problem to illus-
trate and evaluate our method. Finally, we provide
some background information on ANFIS.

2.1. Markov Decision Processes and Q-

Learning

The problem of finding a strategy for adjusting
weighting matrices can be viewed as a deterministic
Markov Decision Process (MDP). A Markov Decision
Process consists of a set of states, S, a set of actions,
A, a reward function, R : S×A → <, and a state tran-
sition function, T : S × A → Π(S), where Π(S) is a
probability distribution over S. A deterministic MDP
is a MDP in which the state transitions are determin-
istic. The action at each state is selected according to
a policy function, π : S → A, which maps states to ac-
tions. The goal is to find the optimal policy, π∗, which
maximizes a performance metric, e.g. the expected dis-
counted sum of rewards received.

Optimal policy of a MDP can be learned using RL
techniques. Q-learning is a RL technique, which learns
the optimal policy of a MDP by learning a Q-function
(Q : S × A → <) which maps state-action pairs to
values. The optimal Q-value for a state-action pair,
Q∗(s, a), is the expected discounted reward for taking
action a in state s and continuing with the optimal pol-
icy thereafter. The optimal policy is determined from
the optimal Q-value

π∗(s) = argmaxaQ∗(s, a) (1)

Q-values are updated based on the reward received. If
each state-action pair is visited frequently enough then
it is guaranteed that the estimate Q-value will converge
to the optimal Q-value.

2.2. Description of New Methodology

Consider the following linear system with passive con-
trol parameters pi(i = 1, . . . , q) and active control in-
put u:

ẋ(t) = A(p1, . . . , pq)x(t) + B1(p1, . . . , pq)u(t) + B2f(t)
(2)

y(t) = Cx(t) (3)

where x ∈ <n is the system state vector, u ∈ <m is
the control input vector, y ∈ <p is the output perfor-
mance vector, and f is the white Gaussian noise of ex-
citation. The matrices A, B1, B2, and C are system
matrix, control input matrix, disturbance input ma-
trix, and output matrix, respectively.

For a given set of state weighting matrices Q and
control weighting matrix R, the optimal values of the

passive control parameters pi can be found by minimiz-
ing the cost function, which is selected to be the min-
imized cost function of the stochastic regulator prob-
lem [6].

J = Min(

∫
∞

0

[xT (t)Qx(t) + uT (t)Tu(t)]dt) (4)

As reported in [14] and [12], the system state weight-
ing matrix Q and control weighting matrix R deter-
mine the solution of the regulator Ricatti equation and
hence the active control gains and the optimal values
of the passive control parameters. Therefore, the sys-
tem performances are highly dependant on the weight-
ing matrices Q and R. Our problem is now formulated
as the following: Finding the weighting matrices Q and
R such that the generated active-passive hybrid con-
trol with optimal passive control parameters p∗

i and op-
timal active control gain Kc yields a closed-loop sys-
tem which satisfies some specific constraints from the
system control designers.

Following the assumption made in [1, 10, 9, 16, 2],
the weighting matrices Q and R are restricted to be
diagonal such that

Q = diag[w1
m w2

m . . . wn
m] (5)

R = diag[w1
c w2

c . . . wm
c ] (6)

where wi
m (i = 1, . . . , n) is the state weighting fac-

tor on the ith structural mode, wi
c (i = 1, . . . , m) is

the control weighting factor on the jth control input.
Therefore, the goal of the optimization problem is to
find the optimal value of a weighting factor vector,
w = (wm

1, . . . , wm
n, wc

1, . . . , wc
m) = (w1, . . . , wm+n)

given the optimal values of the active feedback gain
vector and the passive design variables.

The weight selection problem is cast as a RL prob-
lem, where the state space is a (n + m)-dimensional.
In our framework, we use Q-learning to solve the RL
problem. For each weight vector, the optimal value of
the passive design variables are computed using hybrid
GA. This layered approach, i.e. Q-learning for select-
ing weight vector and hybrid GA for selecting optimal
passive design variables, allows for solving optimization
problems that cannot be solved using GA alone. Fur-
thermore, the Q-learning’s optimal policy enables the
training of neuro-fuzzy systems, e.g. ANFIS, and yields
reusable knowledge in the form of fuzzy if-then rules.

The proposed approach is given in Fig. 1. The first
step is to initialize the state space, which includes
the following: (1) determine the range of each weight
variable to be optimized, and (2) discretize the range
of each weight variable. Two nested loops are then
executed. The inner loop represents a single search
through the state space –repeated until a maximum



Figure 1. Overall view of the proposed layered

methodology

number of iterations is reached. The outer loop is re-
peated until the policy for the RL agent converges.

The first step in the outer loop is to initialize the lo-
cation of the RL agent in the state space, which is de-
termined by the initial values of the elements of w. This
basically defines the starting point of the RL agent’s
search in the state space. The RL agent first finds the
optimal value of the passive design variables using hy-
brid GA and then evaluates the design based on the
design objectives. Next, it selects an action and up-
dates its state according to the selected action.

The set of actions the RL agent can perform is de-
noted as a = (a1

1, a2
1, . . . , a1

n+m, a2
n+m), where a1

i

is an increase in wi and a2
i is a decrease in wi. The

amount of increase or decrease ∆wi depends on how the
state space is discretized. Actions are selected accord-
ing to a stochastic strategy. The strategy is designed
to allow for exploration of the search space by proba-
bilistically selecting between the action corresponding
to the maximum Q-value and other actions. The RL
agent then finds the optimal value of the passive de-
sign variables for the new state using hybrid GA and
evaluates the design using the design objectives.

In order to learn the optimal policy for weight ad-
justments the algorithm must compute the reward,
which is calculated based on the degree in which the
new design improves (or deteriorates) over the previ-
ous design. The reward is the difference between the
evaluation of the current state and the previous state.
Each state is evaluated by computing D, the distance
between its performance (e.g. power consumption, vi-
bration magnitude) and the design objectives. Hence,
the reward is r = Dold − Dnew. A reward is positive if
the performance of the new design is closer to the de-
sign objectives.

2.3. Neuro-fuzzy Systems: ANFIS

Neuro-fuzzy systems are a combination of two pop-
ular soft computing techniques: neural networks and
fuzzy systems. Neural networks have the capability to
learn from examples, yet the learned knowledge cannot
be represented explicitly. On the other hand, knowl-
edge in fuzzy systems is represented via explicit fuzzy
if-then rules, yet fuzzy systems have no learning ca-
pability. Neuro-fuzzy system is a hybrid approach in
which a fuzzy system is trained using techniques sim-
ilar to those applied to neural networks. One of the
first neuro-fuzzy systems was Adaptive Network-based
Fuzzy Inference System (ANFIS) [3]. ANFIS represents
a Sugeno-type fuzzy system as a multilayer feedforward
network which can be trained via backpropagation or a
combination of backpropagation and least squares es-
timate.

3. An Example Problem

To evaluate the proposed method, an active-passive
hybrid vibration control problem is formulated as an
example for testing. This test problem is concerned
with utilizing the active and passive characteristics of
piezoelectric materials and circuitry for structural vi-
bration suppression. The concept of the active-passive
hybrid piezoelectric network (APPN) has been investi-
gated by many researchers in the past [14, 12, 5, 8]. In
the following, the proposed methodology is used in the
design process of the active-passive hybrid piezoelec-
tric network for vibration control of a cantilever beam.

A schematic of the system is shown in Fig. 2. A can-
tilever beam is partially covered with two PZT patches
used as actuators. Each PZT actuator is connected to
an external voltage (V1 and V2) source in series with a
resistor-inductor shunt circuit. The beam is excited by
a Gaussian white noise at x = 0.95Lb, and the output
displacement is measured at the free-end of the beam.
The two surface mounted PZT patches are located at



Figure 2. Schematic of the system with APPN

x1 = 0.02m and x1 = 0.08m, respectively. Other para-
meters related to the properties of the beam and PZT
patches are the same as specified in [14].

A system state space form of the system equations
can be expressed as (detailed derivation of the system
equations can be found in [14]):

ẋ = A(L1, R1, L2, R2)x(t) + Bl(L1, R1, L2, R2)u(t) + B2f(t)
(7)

y(t) = Cx(t) (8)

x = [qT q̇T Q1 Q̇1 Q2 Q̇2]
T

,u(t) = [Vc1(t) Vc2 (t)]T f(t) (9)

where q and q̇ are vectors of generalized displacement
and velocity of the beam structure; Q1, Q̇1, Q2, and
Q̇2 are electric charge and current of the first and sec-
ond PZT actuators in the first and second piezoelec-
tric shunting circuit, respectively; u is the control in-
put vector composed of the control voltages Vc1

and
Vc2

; f(t) is the external excitation vector of Gaussian
white noise. Here the system matrix A and control in-
put matrix B1 are function of the circuit parameters
(inductances L1, L2 and resistances R1, R2).

For a given set of weighting matrices Q and R,
the optimal values of the passive design parameters
(L1, L2, R1, and R2), can be found by minimizing the
cost function, Eq. 4, where the system state weight ma-
trix Q and control weigh matrix R can be expressed
as

Q = diag[WQKb WQMb 0 0 0 0] (10)

WQ = diag[w1
m w2

m . . . wn
m] (11)

R = diag[w1
c w2

c ] (12)

where Kb and Mb are the mass and stiffness matri-
ces of the beam structure, respectively. w1

c and w2
c

are scalar weighting factors on the 1st and 2nd control
voltage source, respectively. w1

m w2
m . . . wn

m are scalar
weighting factors on the n structural modes used in the
system equation derivation, respectively. Now our de-
sign problem can be reformulated as finding the scalar
weighting factors on system states (w1

m w2
m . . . wn

m) and
scalar weighting factors on control voltage sources (w1

c ,

w2
c ) such that the optimal active-passive hybrid control

will satisfy all constraints defined by the user.
There are different ways to define the constraints in

the control system design. Eigenvalue assignment, feed-
back gain limit constraints, and input/output variance
constraints have been used in the previous investiga-
tions. In our example constraints on the output perfor-
mance and control input are defined as follows: (1) up-
per bounds are given to restrict the magnitudes of fre-
quency response function at specified spatial locations
and structural resonant frequencies:

‖ G(s)‖s=iωp
=‖ C(SI−A+B1Kc)B2‖s=iωp

≤ µp p = 1, . . . , n

(13)

(2) variances of the control voltage sources are
bounded:

lim
x→∞

E[Vcj
2(t)] ≤ σj

2 j = 1, 2 (14)

4. Experimental Results

We performed several experiments to evaluate our
method. In the first experiment we used our layered ap-
proach to solve an example weight selection problem.
In the second experiment we used the Q-learning’s op-
timal policy to train ANFIS modules. We then used
the trained ANFIS modules to solve two weight selec-
tion problems: the problem that ANFIS was trained
with and a different weight selection problem.

4.1. Experiment 1

In this experiment we performed optimization on an
example APPN problem. The design requirements for
the APPN system are as follows:

1. Magnitude of the frequency response func-
tion (FRF) near the 1st natural frequency of the
system is ≤ -60 dB

2. Magnitude of the FRF near the 2nd natural fre-
quency of the system is ≤ -85 dB

3. Covariance of the 1st voltage source is ≤ 250 V

4. Covariance of the 2nd voltage source is ≤ 250 V

In our simulation, only the first five modes (n = 5)
are considered. For simplicity, we also assume that (1)
the two weighting factors on the control voltage source
are same (i.e. w1

c = w2
c = wc), and (2) the weight-

ing factors on the structural modes other than those
related to the design constraints take the value of 1
(i.e. w3

m = w4
m = w5

m = 1). Now the weighting ma-
trices Q and R are totally determined by three design
variables: wc, w

1
m, and w2

m. Thus the problem of find-
ing optimal weighting matrices Q and R can be refor-
mulated as finding the optimal values of the weight-
ing factor on control voltage source (wc) and those on



Factor log10(wc) w1
m w1

m

Initial -3 1 1
Step size -1 0.5 0.5
Dimension 6 7 7

Table 1. Specification of the state space for ex-

periment 1

structural modes (w1
m and w2

m). The searching state
space of the problem is three dimensional and specifi-
cation of the state space is given in Tab. 1. The value of
w1

m and w2
m increase in the state space by their corre-

sponding step sizes, while the value of wc is decreased
by a factor which is reciprocal to its step size.

In this experiment, for each iteration of the Q-
learning module, a maximum of 100 weight changes
were performed. Each iteration ended when a maxi-
mum number of weight changes was performed. The
program iterated until the convergence of the opti-
mal policy. By optimal policy we mean the optimal
sequence of weight changes leading to a state satisfy-
ing all the user constraints on system output and con-
trol input. The results of numerical experiment 1 are
given in Tab. 2. The weights returned by the program
accomplish an optimal system which satisfy all the con-
straints on the output performance and control effort.
Our proposed method allows for automation of the op-
timization process, frees the expert from the burden of
finding the correct sequence of weight changes, and pro-
duces reasonable results.

4.2. Experiment 2

In experiment 2, we used the Q-learning’s optimal
policy–learned in experiment 1–to train three ANFIS
modules. The ANFIS modules are used to make weight
changing decisions on wc, w1

m and w2
m. The overall

methodology is given in Fig. 3. Next we describe how
to get the training data for ANFIS modules.

The optimal policy is a sequence of actions (i.e.
weight changes) which is derived from the Q-values.
Basically, in each state the action corresponding to the
maximum Q-value is the optimal action. We derived
the optimal actions for each state in the state-space of
experiment 1 problem. The actions corresponding to
weight changes for wc (either increase or decrease) were
used as the training data for the ANFIS module corre-
sponding to weight changing decisions for wc. Training
data for the other two ANFIS was derived similarly.

Each ANFIS module has 4 inputs: (1) magnitude of
FRF near 1st natural frequency, (2) magnitude of FRF

Weighting factor on control (wc): 1.0E-7.0
Weighting factor on the 1st mode (w1

m): 1.0

Weighting factor on the 2nd mode (w2
m): 1.0

Number of iterations for convergence: 34
Number of weight changes per iteration: 100
Magnitude of FRF near 1st natural freq.: -61.5 dB

Magnitude of FRF near 2nd natural freq.: -87.8 dB
Variance of the 1st control voltage: 189.9 V
Variance of the 2nd control voltage: 178.1 V

Table 2. Results for experiment 1

near 2nd natural frequency, (3) variance of the 1st con-
trol voltage, and (4) variance of the 2nd control volt-
age. Each ANFIS input has 3 membership functions as-
sociated with linguistic values bad, average, and good.
The membership functions are Gaussian. Since there
are 4 inputs and each input has 3 linguistic values,
then each ANFIS has 34 = 81 fuzzy if-then rules. AN-
FIS represents a Sugeno-type fuzzy inference system
and the consequent for each rule is a 0th degree func-
tion of the input variables.

We trained the three ANFIS using a hybrid method
– a combination of backpropagation and least squares
estimate. After training, the three ANFIS were used to
make decisions on weight selection problem for which
they were trained with. Starting from the initial weight
settings, hybrid GA was used to find the optimal design
solution. The design solution was input to the ANFIS
modules. The action corresponding to the ANFIS with
the strongest output was selected. This process contin-
ued until a goal state was reached. Starting from the
initial weight settings and following the procedure just
discussed, the goal state was reached after 24 weight
changes. The layered approach used in experiment 1
requires 3400 weight changes to solve the same prob-
lem (34 iteration for Q-learning to convergence, 100
weight changes per iteration, Tab. 2).

Next, we applied the trained ANFIS to solving a dif-
ferent weight selection problem. The requirements for
this test problem are given in Tab. 3. Starting from
the initial weight settings and following the procedure
just discussed, the goal state was reached after 7 weight
changes. The results are given in Tab. 4. The layered
approach requires 300 weight changes to solve the same
problem (3 iteration for Q-learning to convergence, 100
weight changes per iteration).

5. Summary

We propose a layered approach for solving optimal
control and design problems. Such layered approach



Figure 3. Overall view of weight changing

methodology using ANFIS

Magnitude of FRF near 1st natural freq.: -60 dB

Magnitude of FRF near 2nd natural freq.: -75 dB
Variance of the 1st control voltage: 200 V
Variance of the 2nd control voltage: 200 V

Table 3. Test problem requirements

–i.e. Q-learning for selecting weighting matrices and
hybrid GA for selecting optimal design variables– al-
lows for solving optimization problems that cannot be
solved using GA alone. Furthermore, the Q-learning’s
optimal policy enables the training of neuro-fuzzy sys-
tems, e.g. ANFIS, and yields reusable knowledge in the
form of fuzzy rules.

To evaluate our methodology, we performed several
experiments. The experiments showed that our method
can successfully automate the weight selection prob-
lem. Furthermore, the Q-learning’s optimal policy pro-
vides training data for ANFIS modules. ANFIS mod-
ules provide reusable fuzzy rules for the weight selec-
tion problem, which can also be applied to other weight
selection problems. Moreover, the fuzzy rules provide
heuristics about adjusting weights such that an ac-

Weighting factor on control (wc): 1.0E-6.0
Weighting factor on the 1st mode (w1

m): 3.0

Weighting factor on the 2nd mode (w2
m): 1.0

Magnitude of FRF near 1st natural freq.: -61.4 dB
Magnitude of FRF near 2nd natural freq.: -78.0 dB
Variance of the 1st control voltage: 174.8 V

Variance of the 2nd control voltage: 102.3 V

Table 4. Test problem results

ceptable design is reached much faster than using Q-
learning.
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