
The Semantics of MALLET–An Agent

Teamwork Encoding Language

Xiaocong Fan1, John Yen1, Michael S. Miller2, and Richard A. Volz2

1 School of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802

2 Department of Computer Science
Texas A&M University, College Station, TX 77843

{zfan,jyen}@ist.psu.edu, {mmiller,volz}@cs.tamu.edu

Abstract. MALLET is a team-oriented agent programming language
for specifying teamwork knowledge and behaviors; one interpreter of
MALLET has already been implemented in the CAST (Collaborative
Agents for Simulating Teamwork) system. This paper defines an opera-
tional semantics for MALLET in terms of a transition system. This is
important not only in guiding the implementation of other interpreters
for MALLET, but also in formally studying the properties of team-based
agents specified in MALLET.

1 Introduction

Agent teamwork has been the focus of a great deal of research in both theories
[1–4] and practices [5–8]. A team is a set of agents having a shared objective and
a shared mental state [2]. While the notion of joint goal (joint intention) provides
the glue that binds team members together, it is not sufficient to guarantee that
cooperative problem solving will ensue [3]. The agreement of a common recipe
among team members is essential for them to achieve their shared objective in
an effective and collaborative way [4]. Languages for specifying common recipes
(plans) and other teamwork related knowledge are thus highly needed both for
agent designers to specify and implement cohesive teamwork behaviors, and for
agents themselves to easily interpret and manipulate the mutually committed
course of actions so that they could collaborate smoothly both when everything
is progressing as planned and when something goes wrong unexpectedly.

The term “team-oriented programming” has been used to refer to both the
idea of using a meta-language to describe team behaviors (based on mutual
beliefs, joint plans and social structures) [9] and the effort of using a reusable
team wrapper for supporting rapid development of agent teams from existing
heterogeneous distributed agents [10, 11]. This paper adopts the former meaning
and focuses on the semantics of an agent teamwork encoding language called
MALLET (Multi-Agent Logic Language for Encoding Teamwork), which has
been developed and used in the CAST (Collaborative Agents for Simulating
Teamwork) system [8] to specify agents’ individual and teamwork behaviors.

There have been several efforts in defining languages for describing team
activity [12, 13, 3]. What distinguishes MALLET from the existing efforts has
two-fold. First, MALLET is a richer generic language for encoding teamwork
knowledge. Teamwork knowledge may include both declarative knowledge and
procedural knowledge. Declarative knowledge (knowing “that”) describes ob-
jects, events, and their relationships. Procedural knowledge (knowing “how”)
focuses on the way needed to obtain a result, where the control information nec-
essary to use the knowledge is embedded in the knowledge itself. MALLET sup-
ports the specification of both declarative and procedural teamwork knowledge.
For instance, MALLET has reserved keywords for specifying team structure-
related knowledge such as agents in a team, roles an agent can play, etc., as well
as inference knowledge (horn-clauses). MALLET also has constructs for specify-
ing control flows (e.g., sequential, conditional, iterative, etc.) in a team process.
Tidhar also adopted such an synthesized approach [9], where the notions of so-
cial structure and plan structure respectively correspond to the team structure
and team process in our term. While MALLET does not describe team structure
in the command and control dimension as Tidhar did, it is more expressive than
the simple OR-AND plan graphs in describing complex team process.

Second, MALLET is a richer language for encoding teamwork process. In
MALLET, the constraints for task assignments, preconditions of actions, dy-
namic agent selection, decision points within a process and termination condi-
tions of a process can be explicitly specified. The recipe language used in [3]
lacks the support for specifying decision points in a process, which is often de-
sirable in dealing with uncertainty. While the OR nodes of a plan graph [9] can
be used for such a purpose, the language cannot specify complex execution or-
ders. Team/agent selection (i.e., the process of selecting a group of agents that
have complimentary skills to achieve a given goal) is an important aspect of col-
laborative activity [14]. No existing languages except MALLET allow the task
of agent-selection to be explicitly specified in a team process. Using MALLET,
a team of agents can collaboratively recruit doers for the subsequent activities
based on the constraints associated with the agent-selection statement.

The structure of this paper is as follows. Section 2 gives the syntax of MAL-
LET. We prepare our work in Section 3 and give the transition semantics in
Section 4. Section 6 concludes the paper.

2 Syntax

The syntax of MALLET is given in Table 1. A MALLET specification is com-
posed of definitions for agents, teams, membership of a team, team goals, initial
team activities, agent capabilities, roles, roles each agent can play, agents play-
ing a certain role, individual operators, team operators, plans (recipes), and
inference rules.

Operators are atomic domain actions, each of which is associated with pre-
conditions and effects. Individual operators are supposed to be carried out by
only one agent independently, while team operators can only be invoked by more

Table 1. The Syntax of MALLET

CompilationUnit ::= (AgentDef | TeamDef | MemberOf | GoalDef | Start |
CapabilityDef | RoleDef | PlaysRole | FulfilledBy | IOperDef |
TOperDef | PlanDef | RuleDecl)*

AgentDef ::= ’(’ <AGENT> AgentName ’)’
TeamDef ::= ’(’ <TEAM> TeamName (’(’ (AgentName)+ ’)’)? ’)’

MemberOf ::= ’(’ <MEMBEROF> AgentName
(TeamName | ’(’ (TeamName)+ ’)’) ’)’

GoalDef ::= ’(’ <GOAL> AgentOrTeamName (Cond)+ ’)’
Start ::= ’(’ <START> AgentOrTeamName Invocation ’)’

CapabilityDef ::= ’(’ <CAPABILITY> (AgentName | ’(’ (AgentName)+’)’)
(Invocation | ’(’ (Invocation)+ ’)’) ’)’

RoleDef ::= ’(’ <ROLE> RoleName (Invocation | ’(’(Invocation)+’)’)’)’
PlaysRole ::= ’(’ <PLAYSROLE> AgentName ’(’ (RoleName)+ ’)’ ’)’

FulfilledBy ::= ’(’ <FULFILLEDBY> RoleName ’(’ (AgentName)+ ’)’ ’)’
IOperDef ::= ’(’ <IOPER> OperName ’(’ (<Variable>)* ’)’

(PreConditionList)* (EffectsList)? ’)’
TOperDef ::= ’(’ <TOPER> OperName ’(’ (<Variable>)* ’)’

(PreConditionList)* (EffectsList)? (NumSpec)? ’)’
PlanDef ::= ’(’ <PLAN> PlanName ’(’ (<Variable>)* ’)’

(PreConditionList | EffectsList | TermConditionList)*
’(’ <PROCESS> MalletProcess ’)’ ’)’

RuleDecl ::= ’(’ (Pred)+ ’)’
Cond ::= Pred | ’(’ <NOT> Cond ’)’
Pred ::= ’(’ <IDENTIFIER> (<IDENTIFIER> | <VARIABLE>)* ’)’

Invocation ::= ’(’PlanOrOperName (<IDENTIFIER> | <VARIABLE>)* ’)’
PreConditionList ::= ’(’ <PRECOND> (Cond)+ (’:IF-FALSE’ (<FAIL> |

<WAIT> ((<DIGIT>)+)? | <ACHIEVE>))? ’)’
EffectsList ::= ’(’ <EFFECTS> (Cond)+ ’)’

TermConditionList ::= ’(’<TERMCOND> (<SUCCESS> | <FAILURE>)? (Cond)+’)’
NumSpec ::= ’(’ <NUM> (‘ =′ |‘ <′ |‘ >′ |‘ ≤′ |‘ ≥′) (<DIGIT >)+ ’)’

PrefCondList ::= ’(’ <PREFCOND> (Cond)+ (’:IF-FALSE’ (<FAIL> |
<WAIT> ((<DIGIT>)+)? | <ACHIEVE>))? ’)’

Priority ::= ’(’<PRIORITY> (<DIGIT>)+ ’) ’
ByWhom ::= AgentOrTeamName | <VARIABLE> | MixedList
MixedList ::= ’(’ (<IDENTIFIER> | <VARIABLE>)+ ’)’

Branch ::= ’(’(PrefCondList)?(Priority)? ’(’<DO>ByWhom Invocation’)”)’
MalletProcess ::= Invocation

|’(’<DO> ByWhom MalletProcess ’)’
|’(’<AGENTBIND> VariableList ’(’ (Cond)+ ’)’ ’)’
|’(’<JOINTDO> (<AND> | <OR> | <XOR>)?

(’(’ ByWhom MalletProcess ’)’)+ ’)’
|’(’<SEQ> (MalletProcess)+ ’)’
|’(’<PAR> (MalletProcess)+ ’)’
|’(’<IF>’(’<COND>(Cond)+’)’MalletProcess(MalletProcess)?’)’
|’(’<WHILE> ’(’ <COND> (Cond)+ ’)’ MalletProcess ’)’
|’(’<FOREACH> ’(’ <COND> (Cond)+’)’MalletProcess’)’
|’(’<FORALL> ’(’ <COND> (Cond)+ ‘)’MalletProcess’)’
|’(’<CHOICE> (Branch)+ ’)’

than one agent who play specific roles as required by the operators. Before doing
a team action, all the involving agents should synchronize their activities and
satisfy the corresponding preconditions.

Plans are decomposable higher-level actions, which are built upon lower-
level atomic operators hierarchically. Plans play the same role as recipes in the
SharedPlan theory. A plan in MALLET specifies which agents (variables), under
what pre-conditions, can achieve what effects by following what a process, and
optionally under what conditions the execution of the plan can be terminated.

The process component of a plan plays essential role in supporting coordi-
nations among team members. A process can be specified using constructs such
as sequential (SEQ), parallel (PAR), iterative (WHILE, FOREACH, FORALL),
conditional (IF) and choice (CHOICE). An invocation statement is used to di-
rectly execute an action or invoke a plan; since there is no associated doer spec-
ification, each agent coming to such a statement will do it individually. A DO
process is composed of a doer specification and an embedded process. An agent
coming to a DO statement has to check if itself belongs to the doer specification.
If so, the agent simply does the action and moves on; otherwise the agent waits
to be informed of the outcome of the action. A joint-do process (JOINTDO)
specifies a share type (i.e., AND, OR, XOR) and a list of (ByWhom process)
pairs. For the share type “AND”, each of the pairs must be executed before
the complementation of the joint-activity, which requires all the involved agents
acting simultaneously. For an “XOR”, exactly one must be executed to avoid
potential conflicts, and for an “OR”, at least one must be executed (with no po-
tential conflicts). An agent-bind statement is used to dynamically select agents
to satisfy various constraints such as finding an agent that is capable of some
role or action. An agent-bind statement becomes eligible for execution at the
point when progress of the embedding plan has reached it, as opposed to be-
ing executed when the plan is entered. The scope for the binding to a variable
extends to either the end of the embedding plan, or the beginning of the next
agent-bind statement that also binds this variable, whichever comes first.

3 Preparation

The following notational conventions are adopted. We use i, j, k,m, n as indexes;
a’s 3 to denote individual agents; A’s to denote sets of agents; b’s to denote
beliefs; g’s to denote goals; h’s to denote intentions; ρ’s to denote plan templates;
p’s to denote plan preconditions; q’s to denote plan effects; e’s to denote plan
termination-conditions; β and α’s to denote individual operators; Γ ’s to denote
team operators; s and l’s to denote statements within a Mallet-process; ψ and
φ’s to denote first-order formulas; t’s to denote terms; bold t and v to denote
vector of terms and variables. A substitution (binding) is a set of variable-term
pairs {[xi/ti]}, where variable xi is associated with term ti (xi does not occur
free in ti). We use θ, δ, η, µ, τ to denote substitutions.
3 We use a’s to refer to a and a with a subscript or superscript. The same applies to

the description of other notations.

Given a team specification in MALLET, let Agent be the set of agent names,
Ioper be the set of individual operators, TOper be the set of team operators,
Plan be the set of plans, B be the initial set of beliefs (belief base), and G be
the initial set of goals (goal base).

Let P = Plan ∪ Toper ∪ Ioper. We call P the plan (template) base, which
consists of all the specified operators and plans. Every invocation of a template
in P is associated with a substitution: each formal parameter of the template is
bound to the corresponding actual parameter. For instance, given a template
(plan ρ (v1 · · · vj)

(pre-cond p1 · · · pk) (effects q1 · · · qm) (term-cond e1 · · · en) (process s)).
A plan call (ρ t1 · · · tj) will instantiate the template by binding θ = {v/t}, where
the evaluation of ti may further depend on some other (environment) binding µ.
Note that such instantiation process will substitute ti for all the occurrence of vi

in the precondition, effects, term-condition, and plan body s (for all 1 ≤ i ≤ j).
The instantiation of ρ wrt. binding η is denoted by ρ · η, or ρη for simplicity.

We define some auxiliary functions. For any operator α, let pre(α) and
post(α) return the conjunction of the preconditions and effects specified for
α respectively, let λ(α) returns the binding if α is an instantiated operator.
For team operator Γ , |Γ | returns the minimal number of agents required for
executing Γ . For any plan ρ, in addition to pre(ρ), post(ρ) and λ(ρ) as defined
above, tc(ρ), χ(ρ), and body(ρ) return the conjunction of termination-conditions,
the termination type (∈ {success, failure, ε}), and the plan body of ρ, respec-
tively. The precondition, effects and termination-condition components of a plan
are optional. When they are not specified, pre(ρ) and post(ρ) return true and
χ(ρ) = ε. For any statement s, isP lan(s) returns true if s is of form (ρ t) or
(Do A (ρ t)) for some A, where ρ is a plan defined in P ; otherwise, it returns
false. (SEQ s1 · · · si) is abbreviated as (s1; · · · ; si). ε is used to denote the
empty Mallet process statement. For any statement s, ε; s = s; ε = s. (wait
until φ) is an abbreviation of (while (cond ¬φ) (do self skip)) 4, where skip is
a built-in individual operator with pre(skip) = true and post(skip) = true (i.e.,
the execution of skip changes nothing).

Messages Control messages are needed in defining the operational semantics
of MALLET. A control message is a tuple 〈type, aid, gid, pid, · · · 〉, where aid ∈
Agent, gid ∈ wffs, pid ∈ P ∪{nil}, and type ∈ { sync, ctell, cask, unachievable
}. A message of type sync is used by agent aid to synchronize with the recipient
with respect to the committed goal gid and current activity pid; a message of
type ctell is used by agent aid to tell the recipient about the status of pid; a
message of type cask is used by agent aid to request the recipient to perform
pid; a message of type unachievable is used by agent aid to inform the recipient
of the inachievability of pid.

MALLET has a built-in domain-independent operator send(receivers, msg),
which is used for inter-agent communications. pre(send) = true. We assume the

4 The keyword “self” can be used in specifying doers of a process. An agent always
evaluate self as itself.

execution of send always succeeds. If 〈typ, a, · · · 〉 is a control message, the effect
of send(a, 〈typ, a, · · · 〉) will assert (typ a · · ·) as a fact into the agent a’s belief
base. For instance, when agent a1 receives message 〈sync, a2, g, p〉, predicate
(sync a2 g p) will be appended as a fact into the belief base of a1.

Goals and Intentions A goal g is a pair 〈φ,A〉, where A ⊆ Agent is a set
of agents responsible for achieving a state satisfying φ. When A is a singleton,
g is an individual goal; otherwise, it is a team goal.

An intention slice is of form (ψ,A) ← s, where the execution of statement
s by agents in A is to achieve a state satisfying ψ. An intention is a stack of
intention slices, denoted by [ω0\ · · · \ωk] (0 ≤ k), where ωi (0 ≤ i ≤ k) are of
form (ψi, Ai)← si. ω0 and ωk are the bottom and top slice of the intention, re-
spectively. The ultimate goal state of intention h = [(ψ0, A0) ← s0\ · · · \ωk]
is ψ0, referred to by o(h). The empty intention is denoted by �. For h =
[ω0\ · · · \ωk], [h\ω′] � [ω0\ · · · \ωk\ω′]. If ωi = true ← ε (0 ≤ i ≤ k), then
h = [ω0\ · · · \ωi−1\ωi+1\ · · · \ωk]. Let H be the intention set.

Definition 1 (configuration). A Mallet configuration is a tuple 〈B,G,H, θ〉,
where B,G,H, θ are the belief base, the goal base, the intention set, and the
current substitution, respectively. And, (1) B 	|=⊥, (2) for any goal g ∈ G,
B 	|= g, and g 	|=⊥ hold.

B,G,H, θ are used in defining Mallet configurations, because beliefs, goals,
and intentions of an agent are dynamically changing, and a substitution is re-
quired to store the current environment bindings for free variables. Plan base P
is omitted since we assume P will not be changed at run time.

Similar to [15] we give an auxiliary function to facilitate the definition of
semantics of intentions.

Definition 2. Function agls is defined recursively as: agls(�) = {},
and for any intention h = [ω0\ · · · \ωk−1\(ψk, Ak)← sk] (k ≥ 0),
agls(h) = {ψk} ∪ agls([ω0\ · · · \ωk−1]).

Note that goals in G are top-level goals specified initially, while function
agls returns a set of achievement goals generated at run time in pursuing some
(top-level) goal in G.

4 Operational Semantics

Usually there are two options to defining semantics for an agent-oriented pro-
gramming language: operational semantics and temporal semantics. For instance,
temporal semantics is given to MABLE [16]; while 3APL [17] and AgentSpeak(L)
[18] have operational semantics, and transition semantics is defined for ConGolog
based on Situation calculus [19]. Temporal semantics is better for property verifi-
cation using existing tools, such as SPIN (a model checking tool which can check
whether temporal formulas hold for the implemented systems), while operational
semantics is better for implementing interpreters for the language.

We define an operational semantics for MALLET in terms of a transition
system in the hope that it can guide the implementation of interpreters. Each
transition corresponds to a single computation step which transforms the system
from one configuration to another. A computation run for an agent is a finite
or infinite sequence of configurations connected by transition relation →. The
meaning of an agent is a set of computation runs starting from the initial config-
uration. We assume a belief update function BU(B, p), which revises the belief
base B with a new fact p. The details of BU is out the scope of this paper. For
convenience in defining semantics, we assume two domain-independent opera-
tors working on B: unsync(ψ, ρ) and untell(ψ, s). Their effects are to remove
all the predicates that can be unified with sync(?a, ψ, ρ) and ctell(?a, ψ, s, ?id),
respectively, from B.

4.1 Semantics of beliefs, goals and intentions in MALLET

We allow explicit negation in B, and for each b(t) ∈ B, its explicit negation is
denoted by b̃(t). Such treatment enables the representation of unknown.

Definition 3. Given a Mallet configuration M = 〈B,G,H, θ〉, for any wff φ,
any belief or goal formula ψ, ψ′, any agent a,

1. M |= Bel(φ) iff B |= φ,
2. M |= ¬Bel(φ) iff B |= φ̃,
3. M |= Unknown(φ) iff B 	|= φ and B 	|= φ̃,
4. M |= Goal(φ) iff ∃〈φ′, A〉 ∈ G such that φ′ |= φ and B 	|= φ,
5. M |= ¬Goal(φ) iff M 	|= Goal(φ),
6. M |= Goala(φ) iff ∃〈φ′, A〉 ∈ G such that a ∈ A, φ′ |= φ and B 	|= φ,
7. M |= ¬Goal(φ) iff M 	|= Goal(φ), M |= ¬Goala(φ) iff M 	|= Goala(φ),
8. M |= ψ ∧ ψ′ iff M |= ψ and M |= ψ′,
9. M |= Intend(φ) iff φ ∈ ⋃

h∈H agls(h).

4.2 Transition system

We start with the semantics of termination. As shown in the syntax, termination-
conditions can be specified for a plan (we assume the execution of operators
always succeed). Given a configuration 〈B,G,H, θ〉, a plan template (ρ v) and
an invocation (ρ t), let η = {v/t}. 〈B,G,H, θ〉 |= isT ermed(ρ), iff either (1)on
entering, 	 ∃τ ·B |= pre(ρ)θητ , and it is specified that plan invocation (ρ t) fails
when pre(ρ) is false; or (2)in execution, ∃τ · B |= tc(ρ)θητ 5; or (3)on exiting,
	 ∃τ · B |= post(ρ)θητ . If 〈B,G,H, θ〉 |= isT ermed(ρ) holds, a predicate of form
(termed ρ t) will be asserted into B, so that in later transitions (isT ermed(ρ)
may be inderivable then) the termination can be propagated upwards to a higher
plan level.

5 It is a successful termination if χ(ρ) = succeed, and a failure termination if χ(ρ) =
failure. For simplicity, failure termination is assumed in the follows.

Definition 4 (semantics of termination). Let s be any Mallet statement.
B |= termed(s) iff

(termed ρ t) ∈ B, if s = (ρ t), where (ρ v) ∈ P lan
(termed ρ t) ∈ B, if s = (Do A (ρ t)), where (ρ v) ∈ P lan

B |= termed(l1) ∨ termed(l2), if s = (if (cond ψ) l1 l2)

B |= termed(l1), if s = (while (cond ψ) l1)

B |= termed(l1), if s = (l1; · · · ; lm)

B |=
m∧

i=1

termed(li), if s = (choice l1 · · · lm)

B |=
m∨

i=1

termed(li), if s = (par l1 · · · lm)

� ∃τ ·B |= ψτ, if s = (agent-bind v ψ)

B |=
∨

τ∈{θ|B|=ψθ}
termed(l1τ), if s = (forall (cond ψ) l1)

B |=
∨

τ∈{θ|B|=ψθ}
termed(l1τ), if s = (foreach (cond ψ) l1)

B |=
m∨

i=1

termed(li), if s = (JointDo AND (A1 l1) · · · (Am lm))

B |=
m∧

i=1

termed(li), if s = (JointDo OR (A1 l1) · · · (Am lm))

B |=
m∧

i=1

termed(li), if s = (JointDo XOR (A1 l1) · · · (Am lm))

Note that in Definition 4, the truth of termed in the clauses for if and while
is independent from the condition ψ because the truth of ψ might have been
changed during the execution of the sub-statements (say, l1). Also, conjunction
rather than disjunction is used in defining the choice clause because the seman-
tics of choice allows re-try upon failures: a choice statement fails only when all
the branches have failed.

Definition 5 (Goal selection).

∃g = 〈ψ,A〉 ∈ G, ∃(ρ v) ∈ P, self ∈ A,
B |= pre(ρ)θτ, post(ρ)θτ |= ψ, v is not free in θτ

〈B,G, ∅, θ〉 → 〈B,G \ {g}, {[(ψ,A)← (Do A (ρ v)θτ)]}, θτ 〉, (G1)

∀g = 〈ψ,A〉 ∈ G,∀(ρ v) ∈ P � ∃τ · post(ρ)θτ |= ψ

〈B,G, ∅, θ〉 → STOP
, (G2)

〈B, ∅, ∅, θ〉 → SUCCEED
.(G3)

In Definition 5, Rule G1 states that when the intention set is empty, the
agent will choose one goal from its goal set and select an appropriate plan, if

there exists such a plan, to achieve that goal. Rule G2 states that an agent
will stop running if there is no plan can be used to pursue any goal in G. Rule
G3 states that an agent terminates successfully if all the goals and intentions
have been achieved. G1 is the only rule introducing new intentions. It indicates
that an agent can only have one intention in focus (it cannot commit to another
intention until the current one has already been achieved or dropped). To allow
intention shifting (i.e., pursue multiple top-level goals simultaneously), G1 can
be revised by replacing the empty intention set with H .

As defined in Definition 6, when the execution of the top intention slice
is done (the body becomes ε), the corresponding achievement goal ψk will be
checked. If succeed, the intention will be revised with the top slice popped,
and the execution of this intention will proceed (EI1). Otherwise, the execution
stops (EI2); this means something was wrong with the plan selection.. Rule EI3
states that an intention is done successfully and dropped if the ultimate goal ψ0

is satisfiable. If the agent believes the execution of s is terminated but ψ0 is not
satisfiable, it stops abnormally ((EI4)).

Definition 6 (End of intention/intention slice).

B |= ψkθ

〈B,G, [· · · \ωk−1\(ψk, Ak)← ε], θ〉 → 〈B,G, [· · · \ωk−1], θ〉, (EI1)

B �|= ψkθ

〈B,G, [· · · \ωk−1\(ψk, Ak)← ε], θ〉 → STOP
, (EI2)

B |= ψ0θ, {[(ψ0, A0)← s]} ∈ H
〈B,G,H, θ〉 → 〈B,G,H − {[(ψ0, A0)← s]}, θ〉, (EI3)

B �|= ψ0θ, B |= termed(s)

〈B,G,H ∪ {[(ψ0, A0)← s]}, θ〉 → STOP
.(EI4)

The successful execution of an agent-bind statement is to compose the sub-
stitution obtained from evaluating the constraint φ with θ (Rule B1). The agent
stops if there is no solution to the constraints (Rule B2).

Definition 7 (Agent selection). For intention
h = [ω0\ · · · \(ψk, Ak)← (agent-bind v φ); s],

B |= φθτ

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s], θτ 〉, (B1)

� ∃τ ·B |= φθτ

〈B,G, h, θ〉 → STOP
.(B2)

Given any configuration 〈B,G,H, θ〉, for any instantiated plan ρ, variables
in body(ρ) are all bounded either by some binding τ where B |= pre(p)θτ , or by
some preceeding agent-bind statement in body(ρ).

Definition 8 (Sequential execution). For intention
h = [ω0\ · · · \(ψk, Ak)← l1; · · · ; lm],

〈B, ∅, [(true,Ak)← l1], θ〉 → 〈B′, ∅, [(true,Ak)← ε], θ′〉
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← l2; · · · ; lm], θ′〉. (SE)

Definition 9 (Individual operator execution). For intention
h = [ω0\ · · · \(ψk, Ak)← (Do a (α t)); s],
h2 = [ω0\ · · · \(ψk, Ak)← (α t); s], where (α v) ∈ Ioper, η = {v/t},

self = a,B |= pre(α)θητ,B′ = BU(B, post(α)θητ)

〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← l; s], θ〉 , (I1)

self = a, � ∃τ ·B |= pre(α)θητ

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s′; s], θ〉, (I2)

self �= a

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← l2; s], θ〉, (I3),

B |= pre(α)θητ,B′ = BU(B, post(α)θητ)

〈B,G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← s], θ〉, (I4)

� ∃τ ·B |= pre(α)θητ

〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s′′; s], θ〉, (I5).

where l = (Do self (send Ak \ {self}, 〈ctell, self, ψ0, α〉)),
l2 = (wait until ctell(a, ψ0, α) ∈ B),
s′ = (wait until ∃τ ·B |= pre(α)θητ); (Do self (α t))),
s′′ = (wait until ∃τ · B |= pre(α)θητ); (α t)).

Each agent in a team needs to evaluate the top intention slice. Suppose the
intention is of form h. In case that an agent is the assigned doer, if the precondi-
tion of the individual operator is satisfiable wrt. the agent’s belief base, then the
execution of the operator is to update the belief base with the postcondition of
the action (I1); otherwise, the agent has to wait until more information becomes
available (I2). In case that an agent is not the assigned doer, since the intention
is derived from part of a team process, before the agent can proceed, it has to
wait until being told about the accomplishment of α (I3). Rules I4 and I5 are
similar to I1 and I2 except that the intention is now of form h2, which by default
all the individual agents in Ak are the doers of α.

To execute a team operator, all the involved agents need to synchronize.
Let Y (ψ, Γ) = {a′|sync(a′, ψ, Γ) ∈ B}, which is a set of agent names who has
already sent out synchronization message wrt. ψ and Γ .

In Definition 10, Rule T1 states that if the agent itself is one of the assigned
doers, the preconditions of the team operator holds, and the agent has not syn-
chronized with other agents in A, it will first send out synchronization messages
before executing Γ . Rule T2 states that the agent itself has already synchronized
with others, but has not received enough synchronization messages from others,
then it continues waiting. Rule T3 states that the execution of Γ will update B
with the effects of the team operator, and before proceed, it has to retrack the
sync messages regarding Γ (ensure correct agent behavior in case that Γ needs
to be executed later) and inform the agents not in A of the accomplishment of
Γ . Rule T4 deals with the case when the preconditions of Γ does not hold, and
Rule T5 deals with the case when an agent does not belong to A; it has to wait
until being informed.

Definition 10 (Team operator execution). For intention
h = [ω0\ · · · \(ψk, Ak)← (Do A (Γ t)); s], where (Γ v) ∈ Toper, η = {v/t},

self ∈ A,B |= pre(Γ)θητ, sync(self, ψ0, Γ) �∈ B
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s1; s], θ〉, (T1)

self ∈ A,B |= pre(Γ)θητ, sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| < |Γ |
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s2; s], θ〉 , (T2)

self ∈ A,B |= pre(Γ)θητ,

sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| ≥ |Γ |, B′ = BU(B, post(Γ)θητ)

〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← s3; s], θ〉 , (T3)

self ∈ A, � ∃τ ·B |= pre(Γ)θητ

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s4; s], θ〉, (T4)

self �∈ A
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s5; s], θ〉.(T5)

where s1 = (Do self send(A, 〈sync, self, ψ0, Γ 〉)); (Do A (Γ t)),
s2 = (wait until (|Y (ψ0, Γ)| ≥ |Γ |)); (Do A (Γ t)),
s3 = (Do self unsync(ψ0, Γ));(Do self send(Ak \ A, 〈ctell, self, ψ0, Γ 〉)),
s4 = (wait until ∃τ · B |= pre(Γ)θητ); (Do A (Γ t)),
s5 = (wait until ∀a ∈ A · ctell(a, ψ0, Γ) ∈ B).

The semantics of joint-do is a little complicated. A joint-do statement implies
agent synchronization both at the beginning and at the end of its execution. Its
semantics is given in terms of basic constructs.

Definition 11 (Joint-Do). For intentions
h1 = [ω0\ · · · \(ψk, Ak)← (joint-do AND (A′

1 l1) · · · (A′
n ln)); s],

h2 = [ω0\ · · · \(ψk, Ak)← (joint-do OR (A′
1 l1) · · · (A′

n ln)); s],
h3 = [ω0\ · · · \(ψk, Ak)← (joint-do XOR (A′

1 l1) · · · (A′
n ln)); s],

⋂n
j=1 A

′
j = ∅, self ∈ A′

i

〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s1; s], θ〉, (J1)

⋂n
j=1 A

′
j = ∅, self ∈ A′

i

〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s0; s21; s22; s0; s], θ〉, (J2)

self ∈ A′
i, isSelected(A

′
i)

〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s1; s], θ〉, (J3)

self ∈ A′
i,¬isSelected(A′

i)

〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s0; s0; s], θ〉, (J4), where

s0 = (Do self (send
⋃n
j=1 A

′
j , 〈sync, self, ψ0, nil〉));

(wait until (∀a ∈ ⋃n
j=1 A

′
j · sync(a, ψ0, nil) ∈ B)); (Do self (unsync ψ0, nil));

s1 = s0; (Do A′
i li); s

0,
s21 = (If (cond � ∃lx, a · ctell(a, ψ0, lx, 0) ∈ B)

(s3; (Do A′
i li); (Do self (send

⋃n
j=1,j �=iA

′
j , 〈ctell, self, ψ0, li, 1〉)))),

s3 = (If (cond � ∃a · cask(a, ψ0, li) ∈ B)
((Do self (send

⋃n
j=1,j �=iA

′
j , 〈ctell, self, ψ0, li, 0〉));

(Do self (send A′
i \ {self}, 〈cask, self, ψ0, li〉)))),

s22 = (while(cond ∃φx, a · ctell(a, ψ0, lx, 0) ∈ B)
(wait until ∀b ∈ A′

x · ctell(b, ψ0, lx, 1) ∈ B); (Do (untell ψ0, lx))).

Rule J1 defines semantics for joint-do with share type “AND”. It states
that before and after an agent does its task li, it needs to synchronize (i.e., s0)
with the other teammates wrt. li. A joint-do statement with share type “OR”
requires that at least one sub-process has to be executed. In Rule J2, the joint-do
statement is replaced by s0; s21; s22; s0. s21 states that if an agent has not received
any message regarding the start of some sub-statement lx (i.e., this agent itself is
the first ready to execute the joint-do statement), it will sequentially do (a) s3:
if among A′

i this agent is the first ready to execute li, then tell all other agents
not in A′

i regarding the start of li (i.e., 〈ctell · · · 0〉) and request other agents in
A′

i to execute li; (b) agents in A′
i together execute li; (c) tell other agents not in

A′
i the accomplishment of li (i.e., 〈ctell · · · 1〉). s22 states in case that this agent

was informed of the start of some other sub-statement lx, it needs to wait until
being informed by all the doers that lx has been completed. The semantics of
joint-do with share type “XOR” is based on a function isSelected()6: if an agent
belongs to the group of selected agents, it simply synchronizes and executes
the corresponding sub-statement (Rule J3); otherwise, only synchronization is
needed (Rule J4).

Definition 12 (Plan entering, executing and exiting). Let
h1 = [ω0\ · · · \(ψk, Ak)← (Do A (ρ t)); s],
h′

1 = [ω0\ · · · \(ψk, Ak)← (Do A (ρ t))θητ ; sθ],
h′′

1 = [ω0\ · · · \(ψk, Ak)← (Do A (ρ t))θητ ; sθ\(post(ρ)θητ,A)← endp],
h′′′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t))θητ ; sθ\(post(ρ)θητ,A) ← l1; · · · ; lm; endp],
where (ρ v) ∈ P lan, η = {v/t},

self �∈ A
〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s3; s], θ〉, (P1)

self ∈ A, 〈B,G, h1, θ〉 |= isT ermed(ρ),B′ = BU(B, (termed ρ t))

〈B,G, h1, θ〉 → 〈B′, G, h1, θ〉 , (P2)

self ∈ A,B |= pre(ρ)θητ

〈B,G, h1, θ〉 → 〈B,G, [h′
1\(post(ρ)θητ,A)← s1; endp], θητ 〉, (P3)

self ∈ A, 〈B,G, h′′′
1 , ι〉 |= isT ermed(ρ),B′ = BU(B, (termed ρ t))

〈B,G, h′′′
1 , ι〉 → 〈B′, G, h′′

1 , ι〉
, (P4)

self ∈ A,B |= termed(l1), B
′ = BU(B, (termed ρ t))

〈B,G, h′′′
1 , ι〉 → 〈B′, G, h′′

1 , ι〉
, (P5)

self ∈ A,B �|= termed(ρ),B′ = BU(B, post(ρ)θ)

〈B,G, h′′
1 , θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← s], θ〉, (P6)

self ∈ A,B |= termed(ρ)

〈B,G, h′′
1 , θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak)← s2], θ〉, (P7), where

s1 = (Do self (send A, 〈sync, self, ψ0, ρ〉)); (wait until (∀a ∈ A·sync(a,ψ0, ρ) ∈ B));
(Do self (unsync ψ0, ρ)); body(ρ)θητ ;

6 Some negotiation strategy is required to define isSelect; this is left to the designers
of MALLET interpreters.

(Do self (send Ak, 〈ctell, self, ψ0, ρ〉)); (wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)),
s2 = (Do self (send Ak, 〈unachievable, self, ψ0, ρ〉));

(wait until (∀a ∈ A · unachievable(a,ψ0, ρ) ∈ B)),
s3 = (wait until (∀a ∈ A · unachievable(a, ψ0, ρ) ∈ B ∨ ∀a ∈ A · ctell(a,ψ0, ρ) ∈ B)).

Plan execution is a process of hierarchical expansion of (sub-)plans. Rule P1
states that if an agent is not involved, it simply waits until ρ is done. Before
entering a plan, an agent first checks the corresponding pre-conditions. Rule P2
applies when the preconditions does not hold and “wait” is specified as agents’
response (rules can be given for other responses such as “fail” and “achieve”,
refer to syntax). Rule P3 applies when the preconditions holds. s1 states that on
entering a plan, a new intention slice will be appended where the agent needs to
synchronize with others (when everyone is ready the synchronization messages
are dropped to ensure that this plan can be properly re-entered later), and
then execute the plan body instantiated by the environment binding θ and local
binding τ , which is followed by communications (tell other agents not involved
in ρ about the accomplishment of ρ), synchronizations, and endp. Rule P4 and
P5 applies when executing a plan. An agent will give up executing ρ in case
that either isT ermed(ρ) is derivable from the current configuration (Rule P4);
or the first statement of the top intention slice is terminated (Rule P5). In both
cases, all the statements before endp are omitted. On exiting a plan (endp is
the only statement in the body of the top intention slice), the top intention slice
is popped. If ρ has been successfully executed, the DO statement will be dropped
and B is updated with the effects of ρ (Rule P6); otherwise, inform agents in Ak

of the inachievability of ρ (Rule P7). The semantics of plan invocation of form
(ρ t) (i.e., no doers are explicitly specified) can be similarly defined, except that
Ak will be used as the doers of ρ.

The choice construct can be used to specify explicit choice points in a com-
plex team process. For example, suppose a fire-fighting team is assigned to extin-
guish a fire caused by an explosion at a chemical plant. After collecting enough
information (e.g., chemicals in the plant, nearby dangerous facilities, etc.), the
team needs to decide how to put out the fire. They have to select one plan if there
exist several options. The choice construct is composed of a list of branches,
each of which specifies a plan (a course of actions) and may be associated with
preference conditions and a priority information. The preference conditions of a
branch is a collection of first-order formulas; the evaluation of their conjunction
determines whether the branch is workable under that context. The priority in-
formation is used in selecting a branch in case that the preference conditions of
more than one branch are satisfiable.

Given a configuration 〈B,G,H, θ〉 and a statement (choice Br1 Br2 · · ·Brm)
where Bri = (prefi proi (DO Ai (ρi ti))), let BR = {Bri|1 ≤ i ≤ m}, BR− ⊆
BR be the set of branches in BR already considered. We assume B can track the
changes of BR−. Let BR+ = {Brk|∃τ ·B |= prefk ·θτ, 1 ≤ k ≤ m}\BR−, which
is the set of branches that has not been considered and the associated preference
conditions can be satisfied by B. In addition, let BR⊕ be the subset of BR+

such that all the branches in BR⊕ have the maximal priority value among those
in BR+, and ram(BR⊕) can randomly select and return one branch from BR⊕.

Definition 13 (Choice construct). Let
h = [ω0\ · · · \(ψk, Ak)← (choice Br1 Br2 · · ·Brm); s],
h1 = [h\(true, Ak)← (DO Ai (ρi ti)); cendi],

ram(BR⊕) = Bri, B
′ = BU(B,BR−.add(Bri))

〈B,G, h, θ〉 → 〈B′, G, [h\(true,Ak)← (DO Ai (ρi ti)); cendi], θ〉, (C1)

ram(BR⊕) = null

〈B,G, h, θ〉 → 〈B,G, h, θ〉, (C2)

self ∈ Ai, 〈B,G, h1, θ〉 |= isT ermed(ρi), B
′ = BU(B, (termed ρi ti))

〈B,G, h1, θ〉 → 〈B′, G, h, θ〉 , (C3)

self ∈ Ai, B |= termed(ρi)

〈B,G, [h\(true, Ak)← cendi], θ〉 → 〈B,G, h, θ〉, (C4)

self ∈ Ai, B �|= termed(ρi), B
′ = BU(B, post(ρi)θ)

〈B,G, [h\(true,Ak)← cendi], θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← s], θ〉.(C5)

In Definition 13, Rule C1 applies when there exists a workable branch. The
intention h is appended with a new slice ended with cendi so that the agents
in Ak can backtrack to the latest choice point as ρi fails. An agent has to wait
(e.g., for more information becomes available) if there is no workable branch
(Rule C2). Rule C3 applies when an agent starts to do ρi but the preconditions
does not hold (i.e., isT ermed(ρi) is true on entering): it returns to the choice
point (to try another branch). When an agent comes to statement cendi and
finds out that ρi is terminated abnormally (e.g., the performance does not result
in the expected effects), then return to the choice point (Rule C4). In case that
an agent comes to statement cendi and the execution of ρi is successful, it
proceeds to the next statement following the choice point (Rule C5).

Par is a construct that takes a list of processes and executes them in any
order. For instance, an agent can safely execute walking and chewing gum in
either order or at the same time with no conflict. When each process in the list
has completed successfully, the entire par process is said to complete successfully.
If at any point one of the process fails, then the entire par process returns failure
and gives up executing any of the statements after that point.

Intuitively, a parallel statement with k branches requires the current process
(transition) split itself into k processes. These spawned processes each will be
responsible for the execution of exactly one parallel branch, and they have to be
merged into one process immediately after all have completed their responsibility.
To prevent the spawned processes from committing to other tasks, their initial
transitions need to be established such that (1) the intention set only has one
intention with one intention slice at its top; (2) the goal base is empty (so
that the transition cannot proceed further after the unique intention has been
completed). Because the original goal set and intention set have to be recovered
after the execution of the parallel statement, we adopt an extra transition, which
has the same components as the original transition except that # is pushed as

the top intention slice. This indicates the intention is suspended. Note that the
other intentions in the intention set may still be executable, which may change
the belief base and substitution of the transition.

Definition 14 (Parallel construct). Let h0 = [ω0\ · · · \(ψk, Ak)← sk; s],
h = [ω0\ · · · \(ψk, Ak)← sk; s\#], where sk = (par l1 l2 · · · lm),
Tj = 〈B, ∅, [(true,Ak)← lj], θ〉 →∗ 〈Bj , ∅, [(true,Ak)← ε], θj〉∧Bj �|= termed(lj), and
PB = 〈B,G, h, θ〉 ‖ 〈B, ∅, [(true,Ak)← l1], θ〉 ‖ · · · ‖ 〈B, ∅, [(true,Ak)← lm], θ〉,

B �|= termed(sk)

〈B,G, h0, θ〉 → PB
, (PA1)

∧m
j=1(Tj), B

′ = BU(
⋃m
j=1 Bj , B0), θ

′ = θ0θ1 · · · θm
〈B0, G, h, θ0〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak)← s], θ′〉, (PA2)

∃j, 〈B, ∅, [(true,Ak)← lj], θ〉 →∗ 〈Bj , ∅, [(true,Ak)← l′j], θj〉, Bj |= termed(l′j)

〈B0, G, h, θ0〉 → 〈B0, G, h0, θ0〉 .(PA3)

Now, it’s easy to define semantics for composite processes. For instance,
forall construct is an implied par over the condition bindings, whereas foreach
is an implied seq over the condition bindings. The constructs forall and foreach
are fairly expressive when the number of choices is unknown before runtime.
Definition 15 (Composite plans). Let
h1 = [ω0\ · · · \(ψk, Ak)← (if (cond φ) l1 l2); s],
h2 = [ω0\ · · · \(ψk, Ak)← (while (cond φ) l); s],
h3 = [ω0\ · · · \(ψk, Ak)← (foreach (cond φ) l); s],
h4 = [ω0\ · · · \(ψk, Ak)← (forall (cond φ) l); s],

B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← l1τ ; s]}, θ〉, (S1)

� ∃τ ·B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← l2; s]}, θ〉, (S2)

B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← lτ ; (while (cond φ) l); s], θ〉, (S3)

� ∃τ ·B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← s], θ〉, (S4)

∃τ1, · · · , τk ·
∧k
j=1B |= φθτj

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← lτ1; · · · ; lτk; s]}, θ〉, (S5)

� ∃τ ·B |= φθτ

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← s]}, θ〉, (S6)

∃τ1, · · · , τk ·
∧k
j=1B |= φθτj

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← (par lτ1 · · · lτk); s]}, θ〉, (S7)

� ∃τ ·B |= φθτ

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak)← s]}, θ〉, (S8)

5 Conclusion

MALLET is a language that organizes plans hierarchically in terms of different
process constructs such as sequential, parallel, selective, iterative, or conditional.

It can be used to represent teamwork knowledge in a way that is independent of
the context in which the knowledge is used. This paper defined an operational
semantics for MALLET in terms of a transition system, which is important in
further studying the formal properties of team-based agents specified in MAL-
LET. The effectiveness of MALLET in encoding complex teamwork knowledge
was already shown in the CAST system [8], which implemented an interpreter
for MALLET using PrT nets as the internal representation of team process.

References

1. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25 (1991) 487–512
2. Cohen, P.R., Levesque, H.J., Smith, I.A.: On team formation. In Hintikka, J.,

Tuomela, R., eds.: Contemporary Action Theory. (1997)
3. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. Artificial Intelligence 75 (1995) 195–240
4. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artificial

Intelligence 86 (1996) 269–358
5. Tambe, M.: Towards flexible teamwork. Journal of AI Research 7 (1997) 83–124
6. Rich, C., Sidner, C.: Collagen: When agents collaborate with people. In: Proceed-

ings of the International Conference on Autonomous Agents (Agents’97). (1997)
7. Giampapa, J., Sycara, K.: Team-oriented agent coordination in the RETSINA

multi-agent system. Technical Report CMU-RI-TR-02-34, CMU (2002)
8. Yen, J., Yin, J., Ioerger, T., Miller, M., Xu, D., Volz, R.: CAST: Collaborative

agents for simulating teamworks. In: Proceedings of IJCAI’2001. (2001) 1135–1142
9. Tidhar, G.: Team oriented programming: Preliminary report. In: Technical Report

41, AAII, Australia. (1993)
10. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward team-oriented

programming. In: Agent Theories, Architectures, and Languages. (1999) 233–247
11. Scerri, P., Pynadath, D.V., Schurr, N., Farinelli, A.: Team oriented programming

and proxy agents: the next generation. In: Proc. of the 1st Inter. Workshop on
Prog. MAS at AAMAS’03. (2003)

12. Rao, A.S., Georgeff, M.P., Sonenberg, E.A.: Social plans: A preliminary report. In
Werner, E., Demazeau, Y., eds.: Decentralized AI 3 –Proceedings of MAAMAW-
91), Elsevier Science B.V.: Amsterdam, Netherland (1992) 57–76

13. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.:
Planned team activity. In Castelfranchi, C., Werner, E., eds.: Artificial Social
Systems (LNAI-830), Springer-Verlag: Heidelberg, Germany (1992) 226–256

14. Tidhar, G., Rao, A., Sonenberg, E.: Guided team selection. In: Proceedings of the
2nd International Conference on Multi-agent Systems (ICMAS-96). (1996)

15. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak.
In: Proceedings of AAMAS-2003. (2003) 409–416

16. Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model checking multiagent
systems with MABLE. In: Proceedings of AAMAS-2002. (2002)

17. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents: Goal directed 3APL. In: Proc. of the 1st Inter. Workshop
on Prog. MAS at AAMAS’03. (2003)

18. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW’96, LNAI 1038, Springer-Verlag: Heidelberg, Germany (1996) 42–55

19. Giacomo, G.D., Lesperance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. AI 121 (2000) 109–169

