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ABSTRACT
Effective human teams often benefit from proactivity through
members’ capability of anticipating different needs of team-
mates. In this paper, we focus on three issues related to the
behavior of proactive information delivery. Two types of in-
formation needs are identified, the intentional semantics of
ProInform is given, and priliminary experiments are carried
out to study how different strategies for choosing ProInform
impact team performance. The work presented in this pa-
per provide a sound and practical framework that enables
further studies regarding proactive information delivery.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Theory, Experimentation

Keywords
Shared Mental Model, Proactive Information Delivery

1. INTRODUCTION
Psychological studies about human teamwork have shown

that members of an effective team often use overlapping
shared mental models for anticipating information needs of
teammates and for offering relevant information proactively.
Hence, it is highly desirable for software agents to have sim-
ilar proactivity so that they can be used to better simulate,
train, or support human teams for their information fusion,
interpretation, and decision-makings.

Proactive information delivery requires an agent to rea-
son about information needs of other teammates based on
certain computational shared mental model, then initiate
appropriate communicative acts to provide help. In this
paper, we address three issues related to such proactive be-
havior. In section 2 we identify two types of information
needs within an extended framework of the SharedPlan the-
ory. These two types of information needs laid the founda-
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tion for developing algorithms in CAST [3] regarding how to
reason about information needs dynamically. In section 3 we
define the intentional semantics of ProInform, which is dif-
ferent from inform in that ProInform requires the speaker to
be aware of the addressee’s information needs. This formal
semantics offers opportunities for extending existing agent
communication protocols to support proactive teamwork. In
section 4, through experimental results we study how signifi-
cant different communication strategies (for choosing ProIn-
form) may affect team performances.

2. TYPES OF INFORMATION NEEDS
We distinguish two types of information needs. The first

type of information need enables an agent to perform certain
(complex) actions, which contributes to an agent’s individ-
ual commitments to the whole team. We call this type of
information need action-performing information need. The
second type of information need allows an agent to protect
a goal from potential conflicts. Knowing such information
will help an agent to deal with a threat (conflict) to the goal.
Thus, we call this type of information need goal-protection
information need. The following two axiom schemas can be
used for anticipating these two types of information needs,
where CBel(A, B, I, t) , (Bel(A, I, t) ∧Bel(A, Bel(B,¬I, t), t))

∨(Bel(A,¬I, t) ∧Bel(A, Bel(B, I, t), t)), and WBel(A, I, t) ,
(Hold(I, t) ∧Bel(A,¬I, t)) ∨(¬Hold(I, t) ∧Bel(A, I, t)).

Axiom 1 (Action-performing Information Needs).
Bel(A, Int.To(B, α, t, t′, Cα), t)∧ Bel(A, I ∈ pre(α), t)∧
[Bel(A, unaware(B, I, t), t) ∨ CBel(A, B, I, t)]
⇒ Bel(A, InfoNeed(B, I, t′, Cn), t), where Cn = Cα∧Bel(A, I ∈
pre(α), t) ∧ (Bel(A, unaware(B, I, t), t) ∨ CBel(A, B, I, t)).

Axiom 1 states that agent A believes that agent B will
need information I at time t′ under the context Cn if A
believes that (1) B intends to perform action α at time t′, (2)
I is a precondition of α, and (3) B does not know whether
I is true, or B’s belief about I is incorrect. The context
Cn of the information need extends the context Cα for B’s
intention to perform α.

Axiom 2 (Goal-Protection Information Needs). Bel(A,
Int.Th(B, φ, t, t′′, Cφ), t)∧ Bel(A, (unaware(B, I, t′) ∨WBel
(B, I, t′)) ⇒ [∃G ∈ TB, α, t1 > t′ · Do(G, α, t1, Θα) ⇒ ¬φ], t)∧
[Bel(A, unaware(B, I, t), t) ∨ CBel(A, B, I, t)]
⇒ Bel(A, InfoNeed(B, I, t′, Cn), t), where
Cn = Cφ ∧ (Bel(A, unaware(B, I, t), t) ∨ CBel(A, B, I, t)).



Axiom 2 states that A believes that agent B will need
information I at time t′, if lacking information about I en-
ables some agent in an adversary team to take some actions
at a time t1 (later than t′) to destroy B’s goal.

3. PROACTIVE INFORM
Following Cohen and Levesque’s work[1], we treat Attempt

as a certain slice of mental state which could legally lead to
the commitment of doing the associated event. ProInform
extends Inform with additional requirements on the speaker’s
awareness of the addressee’s information needs.

Definition 1. ProInform(A, B, I, t, t1, t′, Cn) , Attempt(A, e,
Bel(B, I, t′), ∃t′′ · (t ≤ t′′ ≤ t1) ∧MB({A, B}, P, t′′), Cp, t, t1),
where P = ∃tb · (t′′ ≤ tb ≤ t1)∧ Int.Th(A, Bel(B, Bel(A, I, t)∧
Bel(A, InfoNeed(B, I, t′, Cn), t), tb), t, tb, Cp), Cp = Bel(A, I, t)∧
Bel(A, unaware(B, I, t), t)∧ Bel(A, InfoNeed(B, I, t′, Cn), t).

The following theorem can be proved by using the help
axiom in the SharedPlan theory [2]. It says that if agent A
knows agent B will need information I at time t′, A will try
to provide help by adopting a potential intention-to.

Theorem 1. Bel(A, InfoNeed(B, I, t′, Cn), t)∧ Bel(A, I, t)∧
¬Bel(A, Bel(B, I, t′), t) ⇒ (∃t1, t2·Pot.Int.To(A, ProInform(A,
B, I, t1, t2, t′, Cn), t, t1, Cn ∧Bel(A, I, t))).

Agents need to deal with uncertainties. As shown in theo-
rem 1, agent A will adopt a potential intention-to regarding
ProInform to provide help. However, whether such poten-
tial intentions-to can be reconciled to intentions-to depends
on the decision-makers’ self awareness and team awareness,
and the strength of these mental measure. For instance,
Bel(A, InfoNeed(B, I, t′, Cn), t) comes from A’s anticipa-
tion of B based on certain assumptions. Hence, such beliefs
are actually associated with probabilities.

On the other hand, communications often carry certain
cost. An agent needs to evaluate the cost and the util-
ity of proactive communications before actually doing it.
Decision-theoretic approaches can be used for an agent to
reason about whether to reconcile its potential-intentions
regarding ProInform to intentions to do it.

4. EXPERIMENTS AND CONCLUSION
To understand how significant different communication

strategies for ProInform may affect team performances,
we examined it in our simulated battlespace system.

The test-bed is composed of two opposing agent teams,
the blue team and the red team. The goal of the blue team
is to destroy the home base of the red team, while the red
team tries to protect their base by attacking any approach-
ing agents of the blue team. Agents in the blue team could
play one of three roles: scout ( sensing), fighter (shooting),
and bomber (bombing the enemy base). The behavior of
the blue team is governed by shared team plans and related
teamwork knowledge, as well as certain individual plans.
For instance, when informed about the location of a mov-
ing enemy, a dynamically assigned fighter will move toward
that enemy and shoot at it, while the other fighters will
move toward the enemy base to protect bombers from be-
ing killed. To introduce risks for communication, the enemy
base has a communication-detection range. Talking inside
the communication-detection range, the speaker might be
detected at a certain probability.

0


3


6


9


12


15


4
 5
 6
 7
 8

Fig.1 comm-detection range as control variable
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Fig.2 number of opponents as control variable
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We devised two communication strategies, S1 and S2, for
scouts in the blue team. In both S1 and S2, scouts need to
make decisions on whether to satisfy action performing in-
formation needs, but only scous in S2 need to make decisions
on whether to satisfy goal protection information needs (i.e.,
scouts in S1 always inform threats). In our experiments, the
location information of detected enemies is action perform-
ing information for the fighters, as well as goal protection
information for the bombers.

We run two sets of experiments, where the communication-
detection range of enemy base (ranging from 4 to 8) and the
number of enemy agents (ranging from 1 to 6) are used as the
control variables, respectively. In each set of experiments,
we randomly generated 50 initial configurations for the lo-
cations of agents in both teams, and run the experiment 50
times for each configuration.

Fig. 1 and Fig. 2 summarize the average number of suc-
cessfully completed missions for the blue team. The fol-
lowing conclusions can be drawn from the experimental re-
sults. (1) Strategy S2 outperforms S1. The blue team using
S2 wins more times, which suggests that decision-theoretic
communication strategies can be effective for team-based
agents to decide on whether to proactively deliver needed
information to teammates. (2) The number of enemy agents
are more effective as control variable. As the difficulty in-
creases, the number of success missions decrease. In both
cases, as the control variable increases, the curves do fluc-
tuate at some points. This is caused by the “grid” feature
of the test-bed. The calculation of probabilities, risks, etc.
are based on the distances between two agents under con-
cern. However, the distance of two objects is approximately
treated as the number of grids between them.
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