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Abstract

Among researchers in multi-agent systems there has been growing interest in using intelligent

agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training

humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively

gathering, fusing, and sharing information, and for building coherent teams with both humans and agents

working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because

the research has spanned diverse disciplines from business management to cognitive science, human

discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive,

list of work in the field, where the taxonomy is organized along two main dimensions: team social

structure and social behaviors. Along the dimension of social structure, we consider agent-only teams

and mixed human/agent teams. Along the dimension of social behaviors, we consider collaborative

behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork—

shared mental models. The contribution of this article is that it presents an organizational framework

for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork

behaviors.

I. I NTRODUCTION

Teamwork is joint work toward common performance goals. Researchers from different dis-

ciplines have defined “team” from different perspectives. Katzenbach and Smith defined team

as “a small number of people with complementary skills who are committed to a common

purpose, set of performance goals, and working approach for which they hold themselves

mutually accountable [1].” They distinguished teams from working groups, which typically have

no significant performance needs, no true interdependency, and no shared accountability. Salas et.

al. [2] defined team as “... a distinguishable set of two or more people who interact dynamically,

interdependently, and adaptively towards a common and valued goal/objective/mission, who each

have been assigned specific roles or functions to perform, and who have a limited life-span of

membership.” A more operational definition of team is given by Cohen, Levesque and Smith

[3] as “a set of agents having a shared objective and a shared mental state”. The simplicity of

this definition is attributed to the notion of joint intention, which requires an agent to commit

to informing other team members whenever it detects the common goal is already achieved or

becomes impossible or irrelevant. Drawn from these definitions, the common characteristics of

teams include team accountability/responsibility, common objective/commitment, performance
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monitoring, and within-team interdependence.

Contemporary research on teamwork spans a variety of disciplines, including psychology,

cognitive science, artificial intelligence, organization science, concurrent engineering, and busi-

ness management [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Among researchers in multi-

agent systems, there has been growing interest in using intelligent agents to model and simulate

human behaviors. To only mention a few: heterogeneous intelligent agents simulating firefighters,

commanders, victims and volunteers conduct search and rescue activities in a virtual disaster

world [14]; agents model and assist operational cells in Network-centric Warfare [15]; cognitive

agents as a model of human operators are employed to interact with simulations of human-

oriented systems in order to repetitively evaluate the design of the systems [16]; interface agents,

empowered with a model of users’ attention, can collaborate better with users [17]; rule-driven

autonomous agents are used in RBSim (Recreation Behavior Simulator) to simulate human

recreation behaviors [18].

In this article we review the state-of-art of research on modeling and simulating human

teamwork behaviors using intelligent agents. But before that, we would like to answer two

questions. The first question is why modeling and simulation of human behaviors are needed.

Generally, human-behavior simulation is important for at least four reasons. (1) Simulations

offer sufficient practice for human training. Simulation tools provide a virtual but realistic

environment for human trainees to learn effective resource allocation and activity scheduling,

to develop their individual and cooperation skills, to understand and improve their multitasking

capacity, to learn how to manage their attentional focus in dynamic domains, and to practice

coordination skills during group decision-making process. (2) Simulation is a practical solution

to improving readiness and lowering costs. For instance, military training exercises involving

real entities are expensive and logistically complex [19]. Simulations can save money and time

by cutting the need to deploy actual equipment and forces, which may even involve multiple

countries. Simulations are particularly useful now for training military leaders because military

organizations can afford fewer training hours and smaller expenditures during field exercises [19].

(3) Simulations can be used for conducting “what-if” scenarios. In complex domains, human

users can leverage simulation tools to watch scenarios unfold on-screen, to explore alternative

hypotheses, to rehearse an event so that they can be better prepared for surprises, etc. (4)

Simulations of what actually occurred can be used for after-the-fact analysis [19]. Noise being
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removed, simulation data can be further generalized into reusable experience for guiding scenario

unfolding in later simulations. The importance of human-behavior simulation is also reflected in

the increasing demands of comprehensive simulation tools in site security, disaster relief, hostage

rescues, crowd control, police raids, as well as battlefield exercises (military maneuvers). Janus,

JTS, and JCATS [19], ModSAF [20], Brahms [21], NSS [22] are representatives of the range of

such simulation tools.

The second question is “why use agents to model and simulate human behaviors”? The answer

lies in four aspects. (1) Agent technology offers a new paradigm for conceptualizing, designing,

and implementing complex software systems. In particular, agents are often implemented using

mentalistic notions such as beliefs, desires, and intentions that are more usually applied to

humans. Being artifacts with properties like autonomy, social ability (communicating via speech

acts protocol) and human-like mental states, agents are the best way to model and simulate human

behaviors that require spatially, functionally, and temporally distributed processing. (2) It is well-

recognized that aggregated units are difficult to simulate due to the complexity of coordination

(e.g., fluid entity relationships within aggregated unit [19]) and information exchange within

and between aggregated units. This can be addressed gracefully using multi-agent systems or

team-based agents [23], [24]. For instance, TaskableAgents are used to simulate the behaviors

of a battalion tactical-operations-center (TOC), decomposing the activities of TOC into multiple

agents that represent different functional areas [25]. (3) Usually, modeling and simulating human

behaviors are not the ends. Simulation systems need to furthersupporthuman users of these

agents in pursuing their analysis goals. Being able to learn from interactions with human users and

adapt to dynamic changes, agents can be used for implementing adjustable intelligence to better

support humans in their team activities. (4) It is desirable that a well-developed simulation system

with adequate intelligence can work seamlessly with real-world equipment or even human peers.

The agent approach is a natural choice because agents can not only encapsulate modularized

intelligence, they also adopt a societal view of computation [26]. There have been several attempts

in using cognitive agents as virtual teammates in mixed human/agent teams [27], [8], [28], [29].

Teamwork behaviors often involve two or more team members. Examples of teamwork-related

behaviors include communication (sharing of information or a mental model such as intentions),

coaching, collaborative problem solving (e.g., decision making, planning), task allocation (work-

load distribution, contracting or delegation), needs anticipation, cross monitoring, and backup
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behaviors [30]. Rather than cover a wide spectrum of teamwork behaviors, in this paper we

choose to focus on four of them: shared mental models, collaborative behaviors, communicative

behaviors, and helping behaviors. The remainder of the paper is organized as follows. In Section

II and Section III we give an overview on the agent research in the field of artificial intelligence

and research about human teamwork behaviors in cognitive science, respectively. Teamwork

modeling in agent-only teams and mixed human/agent teams are surveyed in Section IV and

Section V respectively through identifying some representative systems in the literature and

inspecting how shared mental models, collaborative behaviors, communicative behaviors, and

helping behaviors are modeled or implemented in the systems. Section VI briefly discusses the

recent trends and future directions regarding the modeling of human teamwork behaviors and

Section VII summarizes the paper.

II. A GENT RESEARCH INARTIFICIAL INTELLIGENCE

The term “agent” has been identified as a hardware or software system with certain properties

such as autonomy, social ability, reactivity and pro-activity [31]. Researchers in different disci-

plines have used agents to refer to different entities or artifacts. Generally, the different notions

of agency in the literature can be classified into four categories: software agent, intelligent agent,

robotic agent and cognitive agent.

In mainstream computer science, software agents are taken as software components that

communicate with other peers via message passing [32]. Agents in such a sense can be as simple

as subroutines or as complex as active objects with complicated computing logics. Research in

this area is typically concerned about agent-oriented engineering or methodologies—how to

rapidly develop well-behaved large agent systems while avoiding the notorious pitfalls described

in [33].

Intelligent agents are often specified, designed and built using mentalistic notions [34], [35]. As

intentional systems, they are widely used in the AI field to represent modularized intelligence.

Researchers in this field are interested in formally characterizing properties of agents using

modal logics [36], in understanding the relationships between different mental attitudes (beliefs,

goals, intentions) [37], in investigating how social intelligence can be built on top of individual

intelligence, and in exploring how intelligent agents can form coalitions to solve problems

collaboratively and effectively, etc.
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A robotic agent is an autonomous sensor-motor-control system that is capable of physical

perception, manipulation and processing. In this line of work, researchers try to investigate

intelligence bottom-up in a behavior-oriented way [38].

Cognitive agents [39] are intelligent human-like systems developed using insights from cog-

nitive science. They represent computational models of human thought and reasoning: they

perceive information from the environment, assess situations using knowledge obtained from

human experts, and act to affect the external or internal environment. The most notable cognitive

agent architectures include Soar [40], [41], ACT-R [42], iGEN [43] and Cougaar [44]. They

have been used to develop agents for cognitive tutoring systems, human-computer interaction,

and performance support systems.

A group of individual agents form a MultiAgent System (MAS) when they co-exist and

act (compete or cooperate) in an environment. Multiagent systems, being a subdiscipline of

distributed artificial intelligence (DAI), study networked systems composed of physically or

logically distributed agents (humans, robots, computational problem solvers) that can deliberate,

predict, communicate, and cooperate. MASs can be characterized as: (1) having no explicit global

control, (2) having distributed resource, expertise, intelligence, and processing capabilities, (3)

typically working in an open environment full of uncertainties, and (4) emphasizing social agency

and social commitments [45].

Modularity, distribution, abstraction, and intelligence are four major techniques for dealing

with the size and complexity of domain problems [46]. MAS, which reflects the combination

of all four of these techniques, provides both principles for developing complex systems and

mechanisms for collaborative problem solving. First, MASs are the best way to specify and/or

design systems that require spatially, functionally, or temporally distributed processing [47], [48],

[45]. Second, MASs are a natural way to simulate, train, and support collaborative behaviors in

human teams. Examples of such domains include Robo-Rescue, Network-Centric Warfare, air-

traffic control, and on-line trading. Third, MASs encourage parallelism, robustness, scalability,

understandability, maintainability, and reusability [45], [48], which are typically the desired

features of system designs from the perspective of software engineering. As a new paradigm

for conceptualizing, designing, and implementing software systems [31], MASs have been suc-

cessfully used in a variety of areas including applications for distributed situation awareness and

assessment, distributed resource planning and allocation, distributed expert systems, workflow,
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supply chain management, Web services composition, and collaborative information processing

[47], [23], [24].

Research on agent teamwork in the field of DAI emerged in the early 1990s [7]. Team-based

agent systems are a special kind of MASs that emphasize cooperativeness and proactiveness

in pursuing certain common goals. The Joint Intentions theory [49], [7] and the SharedPlans

theory [50], [51] are two widely accepted formalisms for modeling teamwork; each has been

successfully applied in guiding the design and implementation of multi-agent systems, such as

GRATE* [52], STEAM [23], COLLAGEN [53], CAST [24].

Teams are high-performing cooperative MASs because team members are often deeply com-

mitted both to each other’s individual growth and to the whole team’s success. But on the other

hand, a team requires more cost than a MAS due to maintaining the common vision and mission.

In particular, an inherent overhead is associated with establishing, monitoring, and disbanding

a team [3]. How to reduce such overhead without sacrificing too much team performance has

been and will continue to be a key issue in teamwork research [23], [24].

III. H UMAN TEAMWORK BEHAVIORS

We review the cognitive and psychological studies regarding human teamwork behaviors from

three aspects: communicative behaviors, collaborative behaviors and helping behaviors.

Communication is crucial in high-performing human teams, and it is the basis for developing

teamwork skills such as active listening, questioning to clarify uncertainties, elaborating, persua-

sion, and group decision makings. In general, there exist two styles of communication: reactive

and proactive. Reactive communication refers to the ask/reply mode, also known asmaster-

slave assumption[54]. Proactive communication refers to the mode where a person provides

information without being asked. Both modes are widely used by humans in everyday life. For

instance, team members typically tend to seek new information to achieve their joint goals [55].

Some psychological studies have identified one key characteristic of effective human teams

as those in which members proactively offer information needed by teammates based on the

anticipation of others’ needs [56], [57], [58].

Proactive information delivery complements reactive communication in cases where a person

does not know whom to ask when information is needed or he/she simply does not realize

his/her information needs due to limited knowledge. Proactive information delivery occurs more
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frequently when human teams need to filter and fuse an overwhelming amount of information

and to make critical decisions under time pressure. One of such dynamic domains is Battlespace

Infospheres, which often require a large number of intelligent agents and human agents to form

a team to cooperate effectively in information gathering, information fusion and information

delivering for making better group decisions.

Being able to anticipate teammates’ information needs is the key to proactive communication.

In the ATOM model proposed by Dickinson and McIntyre [56], “recognize other members’ need

for certain information” is listed as one of the teamwork dimensions. In a study by Yen, Fan

and Volz [59], the concept of information-needs is formally characterized and a framework for

anticipating teammates’ information needs is provided. The framework connects the anticipated

information-needs to potential commitments so that agents can choose appropriate communicative

actions to satisfy teammates’ information-needs.

The scope of collaborative behaviors is very broad, including collaborative learning, collabo-

rative planning, collaborative decision-making, collaborative conflict handling, and collaborative

situation awareness, all of which have been actively investigated. Using collaboration as one

of the critical explanatory concepts, Ellis et al [60] examined the effects of cognitive ability,

agreeableness, workload distribution, and structure on team learning. This study supported the

hypothesis that high levels of agreeableness may actually be detrimental to effective collaboration

because premature consensus has a negative effect on group problem solving.

Collaborative (e.g., mixed-initiative) planning is a group activity frequently adopted in human

society. For instance, members of a conference organizing committee negotiate about the schedule

of conference program; a family makes a plan used to contact each other in an emergency

situation; two people collaboratively work out a process for preparing a meal together [50].

Collaborative planning in its nature is incremental, hierarchical and exploratory, and requires a

shared understanding of the planning objective and process. Grosz and Sidner adopted a mental-

state view of collaborative planning; a group of collaborating agents have a shared plans if and

only if they work towards establishing and maintaining a particular collection of beliefs and

intentions [54]. In a study by Lochbaum [61], human discourse understanding was investigated

from the perspective of collaborative planning, leveraging the notion of SharedPlans [54].

Most command and control teams need to make decisions under time pressure. For instance,

the scenario given by Hollenbeck et al. [62] involves a four-person team assigned the task of
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monitoring the airspace in the vicinity of an aircraft carrier battle group. The team members,

having different areas of expertise, have to collaborate in a timely manner to identify threats

from the approaching aircrafts.

The diversity of resources, knowledge, and ideas produces conflict. However, conflict in work

teams is not necessarily destructive [63]. Cooperative conflict can contribute to effective problem

solving and decision making by motivating people to examine a problem; energizing people to

seek a superior solution; and fostering integration of several ideas to create high-quality solutions

[64]. The Team Resolution Process [65] is recommended by Rayeski and Bryant to handle

conflict when it occurs in human teams. The Five-P’s of Conflict Management [66] is identified

as patterns common to all controversies. Negotiation is the most effective approach to solving

conflict. It is recommended [67] that in negotiation the assistance of a third party can help the

two conflicting parties establish a mutual definition and understanding of the problem.

Situation awareness (SA) is a psychological construct that is not directly observable [68]. End-

sley defined SA as being composed of three parts: the perception of elements in the environment

within a volume of time and space, the comprehension of their meaning, and the projection of

their status in the near future [69]. In a distributed environment, situation awareness must be

viewed as a collective property (a type of collective consciousness) because of the distribution

of awareness and knowledge. Collaborative situation awareness helps create and maintain a high

level of shared collective knowledge, which can be leveraged to reconcile differences, construct a

common picture, and plan joint activities. For instance, in Network-centric Warfare [15], shared

battlespace awareness is deemed to be one of the vital factors in the conduct of military operations

in the new information age.

In a word, all the above collaborative behaviors can be covered by the term “collaborative

problem solving”, with the ‘problem’ varied.

Helping behaviors can come in many different forms, such as emergency aids, philanthropic

acts, etc. Pearce and Amato have developed an empirically-derived taxonomy of helping be-

haviors [70]. The model has a threefold structure of helping: (1) doing what one can (direct

help) vs. giving what one has (indirect help); (2) spontaneous help (informal) vs. planned help

(formal); and (3) serious vs. non-serious help. These three dimensions correspond to the type of

help offered, the social setting where help is offered, and the degree of need of the recipient. In

a study by Anderson and Williams, helping behavior is examined among supervisor-subordinate
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dyads from a leader-member exchange (LMX) perspective [71]. As a special kind of helping

behavior, backing-up behavior has been defined as helping other team members perform their

roles [72]. It is recognized that the central characteristic of backing-up behavior is that it reflects

both the recognition and correction of a workload distribution problem [73]. Porter et al. [73]

developed a model devoted specifically to understanding backing-up behavior in teams. The

model predicts that backing up behaviors are a function of characteristics of the team’s task,

those team members who can provide the back up, and those team members who receive the back

up. There have also been studies suggesting that helping behavior in human teams is enabled

by some “overlapping shared mental models” that are developed and maintained by members of

the team [74], [75], [76], [77], [73].

IV. A GENT-ONLY TEAMS

In this section we survey some notable agent systems developed for or used in teamwork

settings. For each of the system, if applicable, we identify and analyze the underlying shared

mental model, communicative behaviors, collaborative behaviors, and helping behaviors.

A. Existing Work

The existing systems modeling and simulating human teamwork using agent technologies

can be classified into three categories: team-oriented agent architectures, team-aware cognitive

systems, and agent-based teamwork testbeds.

For team-oriented agent architectures, we consider OAA [78], STEAM [23], CAST [24],

GRATE* [52], and RETSINA [79]. OAA (Open Agent Architecture) [78] is a facilitator-based

architecture. OAA adopts a blackboard-based framework that allows individual agents to com-

municate by means of goals posted on blackboards controlled by facilitator agents. Basically,

when a local facilitator agent determines that none of its subordinate agents can achieve the

goal posted on its blackboard, the facilitator propagates the goal to a higher-level blackboard

controlled by a higher-level facilitator. This process continues until some competent agent takes

the responsibility. Having knowledge regarding the capabilities of a collection of agents (and

sub-facilitators), facilitator agents play an important role in (1) establishing connections between

service requesters and providers; (2) providing a general notion of transparent delegation, (3)

offering a mechanism for organizing an agent society in a hierarchical way.
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STEAM (a Shell for TEAMwork) [23] is a hybrid teamwork model built on top of the Soar

architecture [40]. STEAM borrows from the strengths of both the Joint Intentions theory [7] and

the SharedPlans formalism [50]. It uses joint intentions as a building block to hierarchically build

up the mental attitude of individual team members, and to ensure that team members pursue

a common solution path. TEAMCORE [80] is an extension of STEAM, taking the perspective

of team-oriented programming. TEAMCORE realized a wrapper agent that handles domain-

independent team expertise and domain-specific team-level knowledge separately, and hides the

details of the coordination behavior, low-level tasking, and re-planning from programmers.

CAST (Collaborative Agents for Simulating Teamwork) [24] supports teamwork using a richer

computational shared mental model, which includes adaptive team processes represented by

predicate-transition nets (PrT nets) as well as team structures and the capability of each team

member. Using such a shared mental model, every CAST agent can reason about what other

teammates are doing, what the preconditions of the teammate’s actions are, whether the teammate

can observe the information required to evaluate a precondition, and hence what information

might be potentially useful to the teammate. As such, agents can figure out what information is

needed to be proactively delivered to teammates.

GRATE* (Generic Rules and Agent model Testbed Environment) [52] is a general-purpose

cooperation framework implemented using the Joint Responsibility model. A rule-based approach

is adopted in GRATE*, where the rules (including situation assessment rules and cooperative

interaction rules) provide an operational semantics for Joint Responsibility. One key task of

applying GRATE* to domain problems is to determine those events which could cause the situ-

ations related to responsibility problem to happen and to encode them explicitly into appropriate

rules. Such an explicit representation of cooperation enables a group of GRATE* agents to

behave both when joint activity is progressing satisfactorily and when it runs into difficulty.

RETSINA-MAS architecture [79] is extended from the RETSINA (Reusable Environment for

Task-Structured Intelligent Networked Agents) agent architecture [81]. RETSINA-MAS agents

interact with each other via capability-based and team-oriented coordination. Initially all agents

share a common partial plan for fulfilling a team task (goal). Each agent then matches its

capabilities to the requirements of the overall team goal within the constraints of its authority

and other social parameters. This produces a set of candidate roles for the agent, who can select

some and communicate to its teammates as proposals for its role in the team plan. Once the team
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members have reached a consensus that all plan requirements are covered by the role proposals

without any conflicts, they can commit to executing the team plan.

COGNET/BATON and Team-Soar are two team-aware cognitive systems able to mimic the

way that humans think and solve problems. COGNET/BATON is a system for modeling and

simulating human work performance in complex environments, where COGNET (COGnition

as a NEtwork of Tasks) [82] refers to a modeling framework for representing the internal

body of expertise and BATON (Blackboard Architecture for Task-Oriented Networks) [83]

refers to an emulation of the internal information processing mechanisms which process and

execute expertise. Recently, COGNET/BATON was extended [84] to support cooperative and

teamwork behaviors.Self-awareness blackboard, proactive, reactive, and introspective controls

are the primitive building blocks for modeling teamwork processes in COGNET/BATON. It is

illustrated [84] that various types of cooperation could be simulated with controls that work from

the declarative knowledge on the self-awareness blackboard.

Team-Soar [85], built on top of Soar [40], is a computational model implemented specifically

for testing a theory of team decision making called “multilevel theory” [86]. It simulates a naval

command and control team consisting of four members who have different expertise and need

to cooperate on the task of identifying the threat level of incoming aircraft. It is shown [85]

that the experiments conducted using Team-Soar supports the same hypotheses of the multilevel

theory that the human team experiment supported [86].

In essence, teamwork testbeds are not agent systems by themselves. Rather, they provide a

simulated environment for studying teamwork-related issues. RoboSoccer [87] and Robocup-

Rescue [14] are two such testbeds.

The RoboCup Soccer Simulator is a multi-agent system testbed where two teams of 11 simu-

lated robotic soccer players can compete against each other. Since 1997, RoboCup international

competitions and conferences have been held annually covering simulation league, small-size

robot league, middle-size robot league, four-legged robot league, and humanoid league. The

ultimate goal of the RoboCup project is to develop a team of fully autonomous humanoid robots

that can win against the human world champion team in soccer by 2050 [87], [88].

Built upon the success of the RoboCup Soccer project, the intention of the RoboCup-Rescue

project is to promote research and development in disaster rescue domains at various levels

involving multi-agent teamwork coordination, physical robotic agents for search and rescue,
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information infrastructures, etc [14]. The project has two camps: the simulation project, and the

robotics and infrastructure project. The simulation project provides an integrated simulation of

disaster situations including the spread of fire, the collapse of buildings, traffic jams, life line cut,

etc. By following common protocols, autonomous virtual entities such as civilians, fire brigades,

ambulance teams and police forces can be developed to act in the simulated world. This not

only offers a rich source of research for AI planning, learning, and resource sharing, but in the

long run it could also provide emergency decision support and actually save people in case of

large-scale disasters [89].

B. Shared Mental Models

A shared mental model produces a mutual awareness, which is the key for supporting many

interactions within a team that lead to its effectiveness and efficiency [6]. The scope of shared

mental models covers shared ontology [90], common knowledge (beliefs) [36], joint goals/

intentions/ responsibility [91], [7], [52], shared team structure [24], common recipes [52], shared

plans [50], etc. The notion of shared mental models (SMM) has been put forward to explain

certain coordinated behaviors of human teams [77], [74].

There have been several theoretical studies on SMM in the AI field. In particular, the Joint

Intentions theory [7] introduces a notion of joint mental attitude (i.e., joint intention) based

on the concept of joint persistent goal. The theory requires a team of agents with a joint

intention each to not only commit to its part in achieving the shared goal, but also to commit

to informing others when the goal has been accomplished, becomes impossible to achieve,

or becomes irrelevant. It thus indicates that robust multi-agent systems can be implemented

to work in a dynamic environment if agents can monitor joint intentions and rationally react

to changes in the environment. Along this line of research, Jennings [52] proposed the Joint

Responsibility model with the explicit representation of cooperation using common recipes. The

Joint Responsibility model, which refines Cohen and Levesque’s work on joint intentions [7],

explicitly captures different causes of recipe failures and clearly specifies the conditions under

which an agent involved in a team activity should reconsider both its joint goal commitments

and common recipe commitments. In addition, a series of research has been focused on the

formal reasoning of common knowledge [36].

The notion of shared mental models in an implemented system may be implicit. For instance,
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to be able to communicate directly, agents in any MASs have to agree on a shared ontology,

which is often implicitly embedded in the system. It is also implicitly assumed that agents in a

MAS have common knowledge on the domain tasks to be solved, the communication protocols

to be used, the social laws or social normatives to follow, etc.

TABLE I

SHARED MENTAL MODELS OF THE SYSTEMS DESCRIBED INSECTION IV-A

Types Systems Components of SMM

OAA hierarchically organized facilitators shared by

Blackboard- agent community, Triggers

based COGNET/BATON team goal,

meta-model of team process and teammates

GRATE* Joint Responsibility, Common recipe

Joint Mental STEAM Hierarchy of joint intentions, team state

Attitudes RETSINA-MAS joint intentions, shared plans

CAST shared plans, shared team structure & progress

Team-Soar SOAR rules for interactions

Rule-based RoboCup Soccer common communication protocols,

RoboCup Rescue common constraints

Table I summarizes the SMM implemented implicitly or explicitly in the systems described

in Section IV-A, where the systems belong to the categories of blackboard-based and rule-based

have only implicitly embedded common knowledge (i.e., structures, rules), and the systems

belong to the category of joint mental attitudes have a stronger notion of computational SMM.

Both OAA [78] and COGNET/BATON [84] use a blackboard structure. OAA triggers provide

a general mechanism for requesting that some action be taken when some set of conditions is

met. The installation of a trigger within an agent can be viewed as that agent’s commitment to

evaluating the conditional part of the trigger [78]. Hence, an agent can share commitments with

other agents by installing the same triggers. OAA blackboards controlled by facilitator agents

provide a global data store for its client agents. A request (e.g., information need) posted on

a blackboard implicitly establishes a shared goal for those agents who can contribute to the

request. For instance, an agent can ask to be notified of certain changes in certain predicates by

placing a trigger on the blackboard [92]. In contrast, the blackboards in COGNET/BATON are
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not shared; each agent has its own blackboard as a structure for realizing self-awareness. In its

blackboard, an agent not only records its own affair, but also models the states of other team

members and the relationship of its local activities to the larger goals and team process. This

establishes a cooperative awareness of team affairs. Such self-awareness establishes an inherent

need for collaboration between individuals and tasks [84]. Thus, for a group of COGNET agents

to achieve effective teamwork, the contents of their blackboards should overlap.

Agents in rule-based systems typically share the rules and knowledge governing their coopera-

tive behaviors. All the members in a Team-Soar team share knowledge such as the interrelations

between environmental attributes, the accessibility of attributes, and other members’ expertise

(the ability to evaluate attributes, combination rules) [85]. Agents developed for acting in the

RoboCup Soccer or RoboCup Rescue simulators also need to conform to common communica-

tion protocols and constraints (e.g., all agents must decide an action within half a second).

GRATE*, STEAM, RETSINA, and CAST are systems with explicitly shared mental models.

GRATE* is a computational interpretation of the Joint Responsibility model, which distinguishes

two types of joint commitment: joint goal commitment and joint recipe commitment. The

semantics of joint commitment are encoded as generic cooperation rules, which are shared by

all team members. GRATE* agents use common recipes, developed via the distributed planning

protocol [52], to guide team activities. In addition, knowledge of others’ capabilities maintained

in each agent’s acquaintance model could also be overlapped.

STEAM agents can build up snapshots of the team’s mental state through forming joint

intentions at different levels of abstraction [23]. The intention hierarchy established jointly by

team members through the establish-commitments protocol ensures that the team pursues a

common solution path in execution. The SMM in STEAM also includes the prescription of

team operators (e.g., decomposition), team state of active team operators (e.g., team members in

the team, subteams, pre-determined team leader, etc.), and the explicit declaration of information-

dependency relationships among actions.

Both RETSINA-MAS and CAST borrow from the strength of the SharedPlans formalism

[54], [50]. A shared plan is characterized in a mental-state view as a particular collection of

beliefs and intentions. An agent is said to have a shared plan with others if and only if the agent

works towards establishing and maintaining those required mental attitudes, and it believes the

other agents do so likewise [54]. Each shared plan is associated with a shared recipe, of which
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team members may have different partial views. The SMM of a team of RETSINA-MAS agents

includes team plans—high-level description of tasks, and state of team affairs (assignment of

team roles, authority relations, team goals).

CAST [24] has implemented a richer shared mental model compared with the systems men-

tioned above. The SMM includes joint goals, organizational structure (i.e., team membership,

sub-team relations, roles each member can play, capability requirements on each role), information-

needs graphs, the structure of team plans, as well as team members’ capabilities and observability.

In addition, the monitoring of teamwork progress is also very important for agents to gain aware-

ness of the current context. Thus, the shared mental model of CAST also contain the dynamic

status of team process as built-in information needs. Treated as such, an CAST agent can not

only better anticipate others’ relevant information needs and reduce the cost of communicating

irrelevant information, it can also dynamically adapt team structure and team process to external

changes.

C. Collaborative Behaviors

In Section III, we mentioned that collaboration is needed when a human team pursues a

joint goal but the achievement of the goal is beyond the capability, knowledge, or capacity of

any individual. Examples of collaboration include collaborative learning, collaborative planning,

collaborative conflict handling, and collaborative situation awareness. From the literature, we

can identify the collaboration behaviors that have been or could be simulated in the systems

described in Section IV-A. However, not much insight can be gained from such identification

alone because collaboration behaviors are typically domain-dependent. Rather, we analyze the

capability of the systems for collaboration behaviors from three abstract levels: atomic team

actions, coordinated tasks and planned team activities.

Atomic team actions refer to those atomic actions that cannot be done by a single agent and

must involve at least two agents. Typically, a team action is associated with certain constraints

describing the prerequisite conditions for doing the action. Examples of such constraints include

the number of performers required, constraints for choosing performers, quality of performance,

etc. Before doing a team action, the associated preconditions should be satisfied by all the

involving agents, and the agents should synchronize when performing the action. Atomic team

actions can be found everywhere in the physical world. For example, two people shake hands
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with each other; several robots lift a heavy object. However, most of the simulation systems

lack the support for atomic team actions, partly because collaboration at this level is hard to

model because it requires every performer to continuously monitor its partners’ performance at

a small granularity and respond to their subtle changes in a timely fashion, and partly because

modeling collaboration at a higher level can more easily expose issues attractive to a wider

research community. Among the above-mentioned systems, only CAST provides a full support for

atomic team actions. CAST has a language-level construct called TeamOperator, with which agent

developers can specify team actions identified from the domain under concern. Preconditions

and constraints on the number of performers can also be specified for a TeamOperator. A

TeamOperator, calledco fire [93], is used in an experiment studying the teamwork behaviors

supported by CAST. Although it is still unclear whether there is a generic support for team

actions in RoboCup Soccer and RoboCup Rescue, concrete examples do exist in these two

real-world simulators (e.g., ball-passing, collaboratively moving a heavy object).

TABLE II

COLLABORATION CAPABILITIES OF THE SYSTEMS DESCRIBED INSECTION IV-A

Systems Atomic team action Coordinated task Planned team activity

OAA Triggers with compound goals

COGNET/BATON team process in goal-trees

GRATE* common recipes

STEAM AND/OR-combination, role dependencyteam operators

RETSINA-MAS team plans in HTN

CAST TeamOperator Joint-DO MALLET process

Team-Soar hard-coded team decision

making process

RoboCup Soccer e.g. ball-passing e.g. arrange a goal shot

RoboCup Rescue e.g., move heavy objects e.g. several agents pass a narrow roaddepend on the client agents

By coordinated tasks we refer to those short-term (compared with long-term plans) activities

involving multiple agents. Executing a coordinated task often requires the involved agents to

establish joint and individual commitments to the task or sub-tasks, to monitor the execution of

the task, to broadcast task failures or task irrelevance whenever they occur, and to replan doing

the task if necessary. A coordinated task is typically composed of a collection of temporally or
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functionally related sub-tasks, the assigned doers of which have to synchronize their activities

at the right time and be ready to backup others proactively. An OAA Trigger with a compound

goal posted on a blackboard launches a coordinated task for all the subordinate agents, who need

to work together in their pursuit of the compound goal. STEAM uses role-constraints to specify

the relationship between sub-tasks of a coordinated task [23]. AND-combination is used when

the success of the task as a whole depends on the success of all the sub-tasks; OR-combination

is used when any one sub-task can bring success to the whole task; and role-dependency can

be used when the execution of one sub-task depends on another. Complex joint team activities

can be specified by using these role-constraints combinatively and hierarchically. CAST uses

the notion of joint types to specify execution constraints on a coordinated task. The Joint-Do

construct has three joint types: AND, OR, and XOR [24]. A Joint-DO statement with joint type

AND succeeds if and only if all of the sub-tasks are executed successfully. A Joint-DO statement

with joint type XOR succeeds if and only if exactly one sub-task succeeds. A Joint-DO statement

with joint type OR succeeds if at least one sub-task succeeds. It is required that all the involved

team members synchronize before and after executing a Joint-Do statement. Arranging a goal

shot in RoboCup Soccer and several platoon agents passing a narrow road in RoboCup Rescue

are concrete examples of coordinated tasks.

Planned team activities refers to common recipes that govern the collaboration process of a

team in solving complex problems. A planned team activity is a long-term process that often

involves team formation, points of synchronization, task allocation, execution constraints and

temporal ordering of embedded sub-activities. COGNET/BATON uses goal-trees to represent

team process, where each goal is associated with triggering knowledge and priority knowledge.

GRATE* has a recipe language, which allows trigger-conditions, roles to be filled, and structure

of sub-operations to be specified for a recipe. STEAM [23] uses the notion of team operator (this

notion is different from the notion of TeamOperator in CAST, where a TeamOperator defines

an atomic team action) to prescribe the decomposition of task structures. Shared team plans in

RETSINA-MAS are represented in the form of an HTN planning structure. Team-Soar only has

one hard-coded team process for making decisions. Comparatively, CAST has a team-process

encoding language called MALLET. A MALLET plan specifies which agents or agent variables

(agent selection can be done dynamically based on the evaluation of certain teamwork constraints)

under what pre-conditions can achieve what effects by following which process, and, optionally,
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under what conditions the execution of the plan can be terminated. A complex MALLET process

can be composed hierarchically using constructs such as sequential (SEQ), parallel (PAR),

iterative (WHILE, FOREACH, FORALL), conditional (IF), and choice (CHOICE). The CHOICE

construct, composed of a list of alternatives (each of which invokes a plan and is associated with

preference conditions and a priority information), can be leveraged to support adjustable team

processes. CAST agents can respond to execution failures by backtracking to the nearest choice

point and making a better decision on the next course of actions based on the current situation.

D. Communicative Behaviors

Inter-agent communication is rooted in research on speech act theory, which can be traced to

work by Searle [94] and further to the seminal work by Austin [95]. In early 1990, Cohen and

Levesque proposed the idea of “performative-as-attempt” [96] which has been adopted as the

standard way of assigning mentalistic semantics to communicative acts (e.g., Arcol [97], KQML

[98], and FIPA’s ACL [99]). Maintaining group awareness and achieving effective coordination

depend on communication. For instance, communication plays an essential role in dynamic team

formation, in implementing team-oriented agent architectures, and more theoretically, in forming,

evolving, and terminating both joint intentions [7] and shared plans [50].

Implemented systems often apply the Joint Intentions theory [7] in deriving inter-agent commu-

nications. The Joint Intentions theory requires that all the agents involved in a joint persistent goal

(JPG) take it as an obligation to inform other agents regarding the achievement or impossibility

of the goal. The Joint Responsibility model [52] extends the Joint Intentions theory by clearly

specifying the conditions under which an agent involved in a team activity should reconsider its

commitments. Specifically, in addition to communications for dropping a joint intention, an agent

should also endeavor to inform all the other team members whenever the desired outcome of

the common recipe under concern is already available or the recipe becomes invalid, untenable,

or violated.

Both reactive and proactive communication embodied in human discourse exist in agent

systems simulating human teamwork. Because communication takes time and attention, resource-

bounded agents often employ selective communication. We compare the communication modes

implemented in the systems described in Section IV-A in terms of whether they allow reactive,

proactive and selective communication and how they derive inter-agent communication (see Table
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III).

As the basic communication mode, reactive communication (i.e., ask/reply) is supported in all

the above-mentioned systems. In essence, the motivation of ‘ask’ depends on the speaker’s self-

awareness of its needs while the replier’s response is triggered by the external request. Among

the systems, OAA, COGNET/BATON and RoboCup Soccer Simulator employ a blackboard

style of communication. In OAA, all communication between client agents must pass through

blackboards; goals posted on a publicly-accessible blackboard establish service requests to all

agents providing the relevant services. COGNET agents, via self-reflection, can actively remind

(request) the other agents to provide information [84]. All players in RoboCup Soccer Simulator

communicate by posting to a common blackboard (a single, unreliable communication channel):

each agent monitors all messages from teammates to determine their internal states, even if the

content of the message is intended for another teammate [100]. Communication in RoboCup

Soccer is driven by collaboration needs. For example, a player can send a message via the

blackboard to another player if the first player wants to pass ball to the second but does not

know its location. RoboCup Rescue simulator has a local language defined for the agent-agent

reactive communication (e.g., say, tell, listen) [14]. Communication in Team-Soar [85] is via

hard-coded communication channel and driven by rules. Reactive communication is used in

GRATE* when an organizer agent needs to establish a team and devise a common recipe for

performing a joint activity.

TABLE III

COMMUNICATION STYLES OF THE SYSTEMS DESCRIBED INSECTION IV-A

Systems Reactive Proactive Selective Driven by

OAA yes goals posted on public blackboard

COGNET/BATON yes yes needs on self-awareness blackboard

GRATE* yes yes joint responsibility, rules

STEAM yes yes decision analysis joint intentions, rules

RETSINA-MAS yes yes joint intentions

CAST yes pro-tell decision analysis anticipated information needs

Team-Soar hard-coded communication channel rules

RoboCup Soccer yes e.g., locker-room agreements [100]collaboration needs

RoboCup Rescue yes limited communication situation
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However, it is inadequate for agents in complex situations to only engage in reactive commu-

nication. First, an information consumer may not realize certain information it has is already out

of date. If this agent needs to verify every piece of information before it is used, the system can

be easily overwhelmed by the amount of communications entailed by such verification messages.

Second, there are cases where an agent itself may not realize it needs certain information due to

its limited knowledge (e.g., distributed expertise). For instance, a piece of information may be

obtained only through a chain of inferences (e.g., being fused according to certain domain-related

rules). If the agent does not have all the knowledge needed to make such a chain of inferences,

it will not be able to know it needs the information, not to mention requesting for it. Proactive

information delivery offers a better solution to the limitations exposed in reactive mode; it shifts

the burden of updating information from the information consumer to the information provider,

who has direct knowledge about the changes of information. Proactive information delivery also

allows teammates to assist an agent who cannot realize it needs certain information due to its

limited knowledge.

Among the systems, COGNET/BATON, GRATE*, STEAM, RETSINA-MAS and CAST sup-

port proactive communication, which is driven either by anticipated needs, or pre-determined

rules, or the semantics of the underpinning teamwork model. In COGNET/BATON, proactive

information exchange is modeled through two metacognitive processes [84]. As soon as an

agent, A, realizes that a teammate, B, is beginning a task that might require information from

A, it will post such a contingency on the self-awareness blackboard. Then, agent A will seek

information periodically on how close B is to needing input, and send B the information input

proactively as soon as it is available. Proactive communication in GRATE* is driven by the

situation assessment rules, which encode the operational semantics of the Joint Responsibility

model. The rules ensure that all team members are informed if a local agent reneges upon

its joint commitment [52]. Proactive communication in STEAM [23] is driven by commitments

embodied in the Joint Intentions theory, as well as explicit declaration of information-dependency

relationships among actions. For example, a STEAM agent has to inform other team members

before it terminates a team operator. RETSINA-MAS agents also derive proactive communication

from joint intentions [79]. To form a shared mental model about each others’ commitments to a

team plan, every individual needs to inform others of its candidate roles. If an individual discovers

that it is no longer capable of performing a role, the agent must communicate this knowledge to
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its teammates and superiors. The proactive information delivery behavior implemented in CAST

is enabled by the anticipation of team members’ information needs through reasoning about the

current progress of the shared team process [24]. In particular, the communication of teamwork

progress (control token information) is implemented in CAST as a kind of built-in information-

needs. CAST agents need to inform appropriate teammates when they start a team plan, a team

operator, a joint-action, or when the execution of a plan is terminated.

The strong requirement on communication among teammates entailed by the Joint Intentions

theory is necessary to model coherent teamwork, but it is too strong in the real case (e.g.,

in time-stress domains) to achieve effective teamwork. Many practical strategies have been

sought to achieve selective communication. For instance, to deliberate upon communication

necessities, STEAM agents consider communication costs, benefits, and the likelihood that

some relevant information may be already mutually believed. CAST employs a context-centric

approach to anticipate others’ information needs. For example, a team process may include

choice (decision) points, each of which can specify several branches (potential ways) to achieve

the goal associated with the choice point. CAST agents would not activate the information-

needs emerging from a specific branch of a choice point until that branch is selected [101].

Similar to STEAM, CAST agents also use a decision theoretic approach to evaluating the benefits

and costs of communication when they consider satisfying others’ information needs. RoboCup

Soccer Simulator provides a realistic communication environment; both communication range

and communication capacity of client agents are limited (e.g., an agent can hear at most 1 message

every 200 msec). Pre-determined protocols such as Locker-room agreements [100] have been

designed to facilitate effective teamwork in RoboCup Soccer where communication is heavily

restricted.

E. Helping Behaviors

Helping behavior in MultiAgent Systems can be defined as helping other team members per-

form their roles under conditions of poor workload distributions, asymmetric resource allocations,

or encountering unexpected obstacles. Theoretically, helping behavior can be derived within both

the Joint Intentions theory [7] and the SharedPlans formalism [50], [51]. For example, a team

holding a joint commitment implies that any agent in the team will intend to help if it knows a

team member requires its assistance [7]. The help axioms in the SharedPlans theory state that
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an agent will consider doing an action if the performance will contribute to the fulfillment of

the agent’s intention from which its teammates can benefit. Yen, Fan and Volz have proposed

an axiom to characterize chains of helping (e.g., indirect help) that often occur in large agent

teams [102].

As an alternative to Pearce and Amato’s taxonomy [70], helping behaviors can simply be

classified asreactivehelping andproactivehelping. Reactive helping is triggered by an external

request and it can be easily realized by agents with the capability of multi-tasking. For instance,

in RoboCup Rescue, when a fire is getting out-of-control the working team can ask another

fire-fighting team for help. Helping behaviors are often domain-dependent and there is no doubt

that all the 9 systems can or can be easily extended to model reactive helping behaviors in

various domains (e.g., in the mission scenario simulated by RETSINA-MAS [79], one platoon

requests reinforcement from other team members).

Some of the systems also support proactive helping. Proactive helping is not initiated by help

requests but by the anticipation of others’ needs from certain shared mental models—even if

such needs are not directly expressed [103]. To help others often requires the agent to monitor

others’ performance. For instance, a COGNET/BATON agent determines whether its teammates

need help by launching a proactive control to periodically assess their performance. The agent

will offer guidance or help in a proactive manner once a team member is judged to be in trouble

[84]. One notable helping behavior in STEAM is the way of dealing with teamwork failures.

STEAM uses role-monitoring constraints (AND, OR, dependency) to specify the relationship of

a team operator and individual’s (or subteam’s) contributions to it. When an agent is unable to

complete actions in its role (via tracking teammates’ role performance) and the embedding team

operator is still achievable, the remaining agents will invoke a repair plan accordingly.

Broadly speaking, proactive information exchange featured by COGNET/BATON, GRATE*,

STEAM, RETSINA-MAS and CAST can also be taken as helping behavior (e.g., helping others

gain global situation awareness, enhance coordination, achieve coherent and effective teamwork).

V. M IXED HUMAN /AGENTS TEAMS

Similar to Section IV, we examine some notable mixed human/agent systems in the literature.

For each of the systems, when applicable, we identify and analyze the underlying shared mental

models, communicative behaviors, collaborative behaviors, and helping behaviors.
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A. Existing Work

Intelligent agents are better at numerical or symbolic processing (e.g., information fusion,

data mining), while humans are experts in cognitive computing such as exception/emergency

handling, multiple meta-level reflections, and comprehensive situation assessment. It is claimed

that agents, if they could collaborate with human peers effectively, can allow humans to pay

their limited attention to more important activities [29], can help build and maintain situational

awareness without overloading human teammates [104], and can make better decisions using

information at a greater accuracy and finer granularity [8].

Recent research has been highlighting the trend of supporting various dimensions of human-

agent interactions [105]. In this section we focus our investigation on three developing fields:

mixed-initiative user interfaces, human-centered teamwork and human-guided teamwork. In

particular, for mixed-initiative user interfaces we consider the efforts at Microsoft [5], [106],

[17] and MERL [53], [107], [108]; for human-centered teamwork we examine KAoS+Brahms

[29], [109] and MokSAF [8], [110]; for human-guided teamwork we consider proxy-based

coordination [111] and the ongoing R-CAST project [112].

With the long term goal of allowing people to interact with computing systems in a manner

similar to the way that people interact with one another, the Attentional User Interface (AUI)

project at Microsoft has been seeking to build computing systems that can recognize the atten-

tional cues from human users and use such cues to guide the timing of interactions with the

users. Horvitz et al. employed Dynamic Bayesian networks for inferring attention from multiple

streams of information and used Hidden Markov Models for reasoning about users’ states of

attention under uncertainty [5]. The attentional models have been applied in developing several

interface agents. For instance, Bayesian Receptionist [106] is a system that models dialogs in a

joint-activity situation; it uses Bayesian models for inferring a user’s communication goal and

uses decision-theoretic control policies for determining when to progress to the next level of

analysis.

Collagen (Collaborative Agent) [53] is a software system built on top of the same principles

that underlie human collaboration from research in discourse theory [54], [50]. It realizes a

standard mechanism for maintaining the flow and coherence of interactions between a human

user and an intelligent agent. The Collagen architecture provides data structures and algorithms
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for representing and manipulating goals, actions, recipes, and SharedPlans. Collagen has been

used in developing interface agents for air travel planning [53], simulation-based training [108],

and thermostat controlling [107].

Human-centered teamwork takes the perspective that humans are the crucial elements in the

system while agents should be adapted to serve humans’ needs [29]. It thus requires agents to

have a detailed understanding of how people actually work.

KAoS is a collection of agent services in the form of adjustable policies, which assure

that agents will always operate within the boundary of established behavioral constraints and

will be responsive to human control [109]. Brahms is a multi-agent modeling and simulation

environment for understanding the interactions between people and systems [21], [113]. Brahms

allows human behaviors to be represented and studied from the perspective of activity theory and

work “practice”, thus helping to uncover the roles people actually play in a complex work space.

The integration of Brahms and KAoS allows Brahms agents, guided by the teamwork policies

explicitly incorporated in KAoS, to renegotiate roles and tasks among humans and agents when

new opportunities arise or when breakdowns occur [29]. This idea of policy-based adjustable

autonomy is under testing in a NASA funded project, where human-robot teamwork onboard

the International Space Station is modeled using Brahms+KAoS [29], [109]. The model includes

a detailed conceptual representation of onboard life, executions of daily planned tasks, crew’s

activities, etc. The model helped uncover some unexpected opportunities for assistance from

robots [29].

MokSAF (a simplified version of ModSAF, which is the acronym of Modular Semi-Automated

Forces) is a computer-based simulation system developed to evaluate how humans can interact

and obtain assistance from agents within a team environment. Each commander has a route-

planning agent (RPA) and an interface agent (MokSAF) with an embedded Geographic Informa-

tion System (GIS). A MokSAF agent can monitor a human’s progress, and reallocate or modify

tasks if the human fails to perform a task [28]. In experimental studies [8], [110], the task

consists of three military commanders each assembling a platoon and planning routes so that all

three platoons arrive at a given rendezvous by a specified time without violating any physical or

intangible constraints. The commanders must evaluate their plans from a team perspective and

iteratively modify the plans until an acceptable team solution is developed.

In human-guided teamwork, humans’ strengths are largely leveraged in guiding agents to
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cooperate towards a desirable solution path. In a study by Scerri et al [111], the idea of proxy-

based coordination (i.e., agents coordinate with others through their proxies) was used to create

heterogeneous teams for an urban disaster recovery domain. The proxies, based on a quantita-

tive model of teammates’ capabilities, allow a team to allocate and reallocate roles (including

coordination tasks) to the most willing and capable team members. To explore how different

styles of coordination among team members may affect team performance, an experiment was

conducted using an extended RoboCup Rescue simulator, where agents work in the virtual city

while people and robots act in the physical world. The preliminary experiment involves a human

fire chief and a number of agent-controlled fire brigades. The human fire chief is given a high-

level view of the fire-fighting progress, the chief thus can make better role-allocation decisions

to save trapped and injured civilians and limit damage. The results did confirm the hypothesis

that exploiting human assistance in coordination can improve the overall team performance.

R-CAST [112] is a multi-agent system that supports human decision-making in a team context

by using a collaborative RPD process (Recognition-Primed Decision model, see [114]) as part

of the team members’ shared mental model. Fuzzy clustering and case-based reasoning are

employed to learn coordination autonomy rules regarding under what contexts the human user

is interruptible and under what situation agents can take the authority to make decisions for the

human. Humans’ assistance in the collaborative RPD process may occur in three situations. First,

R-CAST agents support decision making in time-stress domains. Human users can dynamically

adjust the time interval for making a decision based on the soft real-time constraints. Second,

a human user, based on his expertise, can input assumptions to explore potential alternatives,

and suggest new information-fusion rules to link pieces of information. Third, human teammates

can handle exceptions emerging from the decision-making process by seeking help from other

agents or human team members.

B. Shared Mental Models

The interactions within mixed human/agent teams come in one of three modes: agent-agent

interactions, human-human interactions, and agent-human interactions. Accordingly, the forms

of shared mental models governing the joint activities of a mixed human/agent team also vary

with the characteristics of the team members. From Section IV-B we know that the shared mental

models for agent-agent teams may be blackboard-based, rule-based, or based on joint mental

October 6, 2004 DRAFT



MODELING AND SIMULATING HUMAN TEAMWORK BEHAVIORS 27

attitudes. Such representations still apply to agent-agent interactions in mixed human/agent

teams. How shared mental models among human members in a team are established is far

beyond our current understanding. However, this has nothing to do with the ability of humans

to form high-performing teams. Therefore, one remaining but more important issue faced by

mixed human/agent teams is how a human and an agent represent and reason about their mutual

awareness. This, in turn, will depend on breakthroughs in a variety of fields including Artificial

Intelligence, speech recognition, and natural language understanding. As a short-term solution,

it is not surprising to note that in the six projects described in Section V-A interface agent

technology is unanimously employed to represent the shared understanding between agents and

their human users. Table IV summarizes the shared mental models identified for these systems

(in the table we omit the specific shared goals of the systems because all the teams implicitly

take joint tasks as their shared goals).

TABLE IV

EXAMPLE SHARED MENTAL MODELS OF THE SYSTEMS DESCRIBED INSECTION V-A

Types Systems Examples of SMM

Mixed-initiative AUIs: attention modeling signals about attention, predefined costs of disruptions,

probabilistic user model of attention, task abstraction hierarchy [106]

user interfaces Collagen: discourse theory mutual beliefs (recipe trees, history list), SharedPlans, discourse state

Human-centered Brahms+KAoS humans’ daily behavioral patterns, working context, teamwork policies

Teamwork MokSAF shared domain knowledge (e.g., terrain map, intangible constraints)

Human-guided Proxy-based coordination team plans, team state, roles (shared responsibility)

Teamwork R-CAST team process and progress, interruption policy

The AUI project at Microsoft has developed several mixed-initiative interface agents that can

share with users natural signals about attention [17]. For instance, the LookOut system [106]

maintains a pretrained probabilistic user model of attention that can be incrementally refined

through continual learning. The user model contains assertions about the cost of disruption for

each alert modality (i.e., each alert may have different visual displays), conditioned on the user

being in different attentional states. To enhance the value of services and alerts, LookOut also

considers the temporal pattern of a user’s attentional focus. The Bayesian Receptionist system

[106] can construct a task abstraction hierarchy to facilitate the understanding of a user’s goals.
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The task abstraction hierarchy guides the conversation between the agent system and the user

toward shared understanding about uncertainties and misunderstandings at progressively greater

detail. It thus leads to a more tractable, level-specific modeling and inference of user’s intention.

The elements that are shared between Collagen agent [53] and its human user include mutual

beliefs such as recipe trees, SharedPlans, and focus of discourse attention (also called discourse

state [107] for tracking shifts in the task and conversational context). Collagen agents also

maintain a memory of recent interactions with users. Such “shared” short-term experienc allows

users to make efficient and natural references to objects and services in the most relevant contexts.

Collagen applies focus-guided plan recognition to the utterances and actions in order to maintain

a finer shared mental model between user and the agent [107].

The shared mental models among humans and robots in the human-centered teamwork project

[29], [109] contain two parts: humans’ daily behavioral patterns are learned, modeled using

Brahms, and shared at the group level while teamwork policies are encoded using KAoS. In

the empirical studies using MokSAF [8], [110], what is shared between commanders and their

route-planning agents is domain knowledge such as terrain map and intangible constraints which

are represented through MokSAF interface agents.

The shared mental model of the human-agent team employing proxy-based coordination [111]

includes team plans and various roles derived from the team plans (i.e., shared responsibility).

It also includes a memory of team state, which allows a proxy to quantitatively estimate team

members’ dynamic capabilities in role allocation and reallocation. R-CAST agents [112] share

with their human team members the decision-making process and the dynamic progress (for

anticipating relevant information needs), as well as interruption policies (for achieving reflexive

adjustable autonomy).

C. Collaborative Behaviors

The collaborative behaviors of the systems described in Section V-A can be examined ac-

cording to the taxonomy given in Section IV-C. Although there is no salient evidence that these

systems support atomic team actions that have to be performed jointly by humans and agents,

examples of coordinated tasks and planned team activities can be easily identified. For instance,

route-planning is a coordinated task between theautonomousRPA (route-planning agent) and

its human user; the RPD process shared among all the members of a R-CAST team is a planned
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team activity.

We examine how collaborations are implemented in the systems. The mixed-initiative collabo-

ration implemented in the LookOut system [5] has three modes: manual mode, basic automated-

assistance mode, and social-agent mode. In manual modality, collaboration is invoked directly

by the user; in basic automated-assistance mode, the agent can request additional information

from user considering the cost of disruptions; in social-agent modality, the agent can engage

the user in a dialog using an automated speech-recognition system and a text-to-speech system.

By maintaining the conversation history and focus of discourse segments, a Collagen agent can

collaborate with its human user to solve domain problems such as planning a travel itinerary

[53]. Collaborations in the teams modeled by Brahms+KAoS are governed by teamwork policies

encoded in KAoS [29]. The boundary between the initiative of humans and that of agents can

be refined through adjusting the policies. This allows agents to collaborate with humans at a

desired level of autonomy.

The MokSAF project [110] involves three route-planning agents (RPA), which reflect three

levels of human-agent collaboration.Naive RPA can analyze the route drawn by a commander

by checking the violation of known physical constraints and suggest ways to improve the

route.CooperativeRPA is self-initiative: it can modify the route to avoid violating the physical

constraints.AutonomousRPA takes more responsibility; it can guide a commander throughout

the route-planning task, using its knowledge of both the physical constraints and intangible

constraints and seeking to find the shortest path. Through their proxies, agents in the human-

agent disaster-responding team [111] can do role allocation and reallocation collaboratively. In the

RPD decision making process, humans and R-CAST agents [112] can collaborate in establishing

shared situation awareness, in monitoring an expectancy, etc.

D. Communicative Behaviors

It is much more challenging to maintain mutual awareness in mixed human-agent systems

than in agent-only systems. An agent should not only allow its human teammate to understand

what has happened and why, but it also should allow human to adjust its autonomy and help

people predict what will happen [29], [115]. Thus, effective solutions to supporting human-agent

communications are highly needed in mixed human-agent teamwork.

All the systems described in Section V-A employ interface agent technology. Collagen agents
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are built on top of human discourse theory. MokSAF, RAP Proxy, and R-CAST all feature an

interface containing a domain map for facilitating situation awareness. In addition to interfaces,

Brahms+KAoS and AUIs (attentional user interfaces) also employ speech recognition and natural

language understanding techniques to facilitate direct interactions between humans and agents.

For instance, in the mobile agent project [109], people can interact with their personal agents

using a speech dialog system integrated with Brahms. However, robust solutions to the speech

target problem will continue to be a challenge in allowing users to effectively interact with

multiple devices and people [17].

Coming back to communication styles, all the systems support reactive communication. For

example, being requested of a view of the current interaction history, a Collagen agent can

directly display the content to its user [53]. It can also ask for clarification under ambiguity

[107]. If the LookOut system is uncertain (i.e., at lower levels of confidence) about a user’s

intentions, it can engage in an efficient dialog with its user to get additional information [5]. In

the disaster-responding team using proxies [111], an agent can ask the human fire chief to make

role-allocation decisions through their proxies.

Based on the reported work proactive communication can only be identified from R-CAST

and AUIs. For instance, being informed of the recognition result, R-CAST agents can help the

decision-maker in detecting changes to the environmental variables relevant to the expectancies,

and inform the changes proactively [112]. If the LookOut system is confident enough in its

assessment of a user’s goal, it will proactively display a schedule to the user [5].

TABLE V

COMMUNICATION STYLES (FROM AGENTS TO HUMANS) OF THE SYSTEMS INSECTION V-A

Techniques Systems Reactive Proactive Selective

Collagen yes communication menu, plan recognition

Based on User Interface MokSAF yes

RAP Proxy yes adjustable parameter: maxAsked

R-CAST yes yes user’s cognition load analysis

Interface + speech recog./ Brahms+KAoS yes notification policy

natural lang. understanding AUIs yes yes filtered by attention model and decision model

In human-agent interactions it is critical to ensure interruptions of humans by an agent be
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done judiciously and infrequently [29], [5]. For this reason, most of the above-mentioned systems

have sought to achieve selective communications.

The AUI project uses an economic principle in attention-sensitive notification [17]. A decision-

analytic model is employed to decide if, when, and how to alert a user about information from

multiple message sources, considering the tradeoff between the expected value of information

and the costs of potentially bothering a user needlessly. Bayesian Receptioist uses a Bayesian

model to infer the probabilities of a user’s communication goals at different levels of the goal

hierarchy, and then employs value of information (VOI) analysis to identify the best questions

to ask and the best visual observations to make [106].

To get around the complexity of natural language understanding, users are not allowed to

make arbitrary communications with Collagen agents. Rather, users can only communicate with

a Collagen agent by selecting from a dynamically-changing user communication menu, which

is computed from the current discourse agenda [53]. Plan recognition technique (i.e., inferring

intentions from actions) is also adopted in order to reduce the amount of communication required

to maintain a mutual understanding of the shared plans between user and agent [107].

Brahms+KAoS supports selective communication through a so-called notification policy [29].

When an important event is signaled, the utility of various alternatives is evaluated in light of

the current task and other contextual factors. If a notification is required, the Brahms agent will

notify the human in a manner appropriate with respect to modality, urgency, and location of the

human.

The disaster-responding team using proxy-based coordination strategy employs a decision-

theoretic approach to communications [111]. In addition,maxAsked—an adjustable parameter

in the role-allocation algorithm—can be used to control how many of the capable teammates to

ask before the team gives up.

R-CAST also employs a decision-theoretic approach for deciding whether to inform others

when obtaining a new piece of information. Additionally, the factor of human members’ cognitive

capacity is considered in making decisions on whether to send a human teammate multiple lower-

level information or just send fused higher-level information [104], [112].
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E. Helping Behaviors

Normally, humans can recognize the help needs of agents through observation or explicit

requests from the agents while agents can approximately anticipate the help needs of humans

based on certain probabilistic models and relevant contextual cues. One principle for guiding

the design of mixed-initiative user interfaces, as suggested by Horvitz [5], is that it is preferable

to “do less” but do it correctly under uncertainty. “Doing less” provides users with a valuable

advance towards a solution and minimizes the need for costly undoing or backtracking [5].

This principle also applies to helping behaviors in general: although agents can watch “over the

shoulders” of humans and jump in with advice or assistance, the agents have to be cautious to

avoid helping humans needlessly. Thus, effective human-agent teamwork operating in a dynamic

environment depends largely on how well agents can recognize the opportunities for providing

help.

To the best of our knowledge, most of the systems described in Section V-A lack an explicit

model of helping behaviors and lack a generic approach to recognizing assistance opportunities.

We thus choose to simply identify some examples of helping from the systems.

The probabilistic user model of attention in the AUI project can be leveraged to estimate the

opportunities of helping. To avoid poor guessing about the goals and needs of users, the LookOut

system resorts to life-long learning to incrementally refine the user’s attention model and timing

model. At lower-levels of confidence, LookOut can choose to display its guess to the user for

further suggestions [5].

Upon request, a Collagen agent can show its user parts of the agent’s internal discourse state

in the form of asegmented interaction history—a compact, textual representation of the past

and present states of the discourse. The interaction history can not only help the user reestablish

where in the problem solving process he/she was, it can also serve as a menu for history-based

collaboration control—replaying earlier segments in a new context, allowing the user to return

to earlier points in the conversation [53]. A concrete example of help exhibited by the air-travel

planning agent is: the agent can propose adding new airlines when it realizes that the user has

over-constrained the trip being scheduled [53].

In the mobile agent project [109], Brahms agents are deployed on different mobile systems

over a wide-area wireless network. KAoS helps Brahms agents recover gracefully when com-
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munication among agents fails. The RPA agents in the MokSAF project can help a commander

recover from errors in the route drawn by the commander [110]. In proxy-based coordination

[111], the proxy of a human team member can decide whether to reject or accept an unassigned

role on behalf of the human. Such an adjustable autonomy can help balance the human’s

workload, filtering out tasks that would be better performed by other agent team members.

At the stage of action evaluation, R-CAST agents can monitor the expectancies recognized by

the decision-making agent (and the human supervisor). This may help the whole team recover

from inappropriate decisions at the earliest possible opportunity [112].

VI. RECENT TRENDS AND FUTURE DIRECTIONS

In this article we evaluated the major works in the field of teamwork modeling, especially

focusing on the modeling of human teamwork behaviors using BDI type systems. More recently,

there has been significant interest in applying decision-theoretic principles to build team sys-

tems. For instance, work on decentralized Markov Decision Process (DEC-MDP) and partially

observable Markov decision process (POMDP) [116], [117], [118], [119] has gained significant

attention in recent agents conferences such as AAMAS. The major goal of these studies is to

derive action or/and communication policies that can optimize some global value functions. A

recent complexity result has shown that solving decentralized MDPs is NEXP-hard [120]. While

there has been a long history of arguing on the criterion of decision making (satisficing or

optimizing [121]) 1, there is no doubt that agents using the MDP approaches can help people

teammates make decisions on well-defined problems.

Another key issue in teamwork is distributed resource allocation and multiagent planning

[45]. Researchers have used auctions [123], distributed constraint optimization [124], and other

techniques [125] to accomplish such distributed resource allocations. However, this topic deserves

a survey paper in its own right and we choose not to expose it here. Interested readers may find

the above pointers useful in exploring this topic.

In addition, although we have not mentioned, agent technology is particularly useful in

designing self-learning or self-evolving systems. Take the field of language evolution as an

1For example, researchers in the camp of naturalistic decision making take the opinion that when making decisions, people

usually do not know the probabilities of all the choices. They even do not know all the possible options. Communities dealing

with time stress tasks often demand simulation systems with realistic (human-like) decision representation [122].
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example. Recently, there is a growing interest in using mathematical and computational mod-

eling to explore issues relevant for understanding the origin and evolution of language [126].

For instances, Hurford described computer simulations in which coordinated language systems

emerge within populations of artificial agents through iterated learning across generations [126];

Perlovsky [127] suggested a computational mechanism that the mind might use for integrating

cognition and language. A distant view in this area might be to employ advanced intelligent

agent technologies in conducting certain realistic simulations to test hypothetical theories about

the mechanisms underlying the evolution of language.

VII. SUMMARY

Teamwork modeling has spanned diverse disciplines from business management to cognitive

science, human discourse, and distributed artificial intelligence. This article organized the existing

work in this field along two dimensions: team social structure and social behaviors. Agent-only

teams and mixed human/agent teams were considered along the dimension of social structure.

Shared mental models, collaborative behaviors, communicative behaviors, and helping behaviors

were considered along the dimension of social behaviors.

A list of systems for developing agent-only teams were examined first. The shared mental mod-

els of these systems were generalized into three categories: based on blackboards, based on rules,

and based on joint mental attitudes. The collaborative behaviors were analyzed at three levels:

atomic team actions, coordinated tasks, and planned team activities; most of the systems support

planned team activities. Communicative behaviors of the systems were analyzed by examining

whether they support reactive, proactive, and selective communications. Helping behaviors of

the systems were examined from the perspective of activeness (reactive and proactive).

A list of systems for developing mixed human/agent teams were reviewed next. We grouped

the systems into three categories: mixed-initiative user interfaces, human-centered teamwork, and

human-guided teamwork. While it is hard to classify the shared mental models implemented

in these systems as we did for agent-only teams, interface agent technology is unanimously

employed in the systems to represent the shared understanding between agents and their human

users. In human-agent interactions it is critical to ensure interruptions of humans by an agent be

done judiciously and infrequently. Thus, most of the systems have sought to achieve selective

communications. Domain-dependent collaborative behaviors and helping behaviors were also
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identified from the systems, with some principles highlighted.

Modeling and simulating human teamwork behaviors is still a research field in its infancy and

with many open issues. A few such open issues are: while interface agents promise to achieve

“adaptable division of labor between humans and computers [107]”, it is still a challenge for one

interface agent to effectively collaborate with multiple human teammates simultaneously. When

agents work together with humans, one complex issue is how to ensure that “the cost of human-

agent coordination (e.g., the monitoring of agents raises new tasks to humans) does not exceed the

value of assistance offered by agents [29].” Rather than focusing on identifying challenges and

open issues in this field, this article gives an organizational framework for analyzing teamwork

simulation systems and for further studying simulated teamwork behaviors.
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