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Abstract The rapid advancement of nanotechnology research and development during the past decade

presents an excellent opportunity for a scientometric study because it can provide insights on the dynamic

growth of the fast evolving social networks associated with this exciting field. In this paper we conduct

a case study on nanotechnology in order to discover the dynamics that govern the growth process of

rapidly advancing scientific collaboration networks. This paper starts with the definition of temporal

social networks and demonstrates that the nanotechnology collaboration network, in resemblance of other

real-world social networks, exhibits a set of intriguing static and dynamic topological properties. Inspired

by the observations that in collaboration networks new connections tend to be augmented between nodes

in proximity, we explore the locality factor and the attachedness factor in growing networks. In particular,
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we develop two distance-based computational network growth schemes, namely DG and DDG. The DG

model considers only locality element while the DDG is a hybrid model that factors into both locality and

attachedness elements. The simulation results of these models indicate that both clustering coefficient

rates and the average shortest distance are closely related to the edge densification rates. In addition, the

hybrid DDG model exhibits higher clustering coefficient values and decreasing average shortest distance

when the edge densification rate is fixed, which implies that combining locality and attachedness can

better characterize the growing process of the nanotechnology community. Based on the simulation results

we conclude that social network evolution is related to both attachedness and locality factors.

Key words Social network analysis, growth dynamics, knowledge engineering

1 Introduction

Nanotechnology is a highly interdisciplinary field that is generally concerned with the control of matter

on the molecular level in scales smaller than 1 micrometer, normally 1 to 100 nanometers, and the

fabrication of devices within that size range. This field has been growing at an astounding pace in the

last decades. This is reflected in the worldwide growth of funding from both government and industry,

the increasing penetration into other disciplines, as well as the accelerating growth in the number of

scientific publications and involved researchers. The explosive development of this field makes it ripe for

in-depth scientometric analysis for this field. This paper conducts a study on the evolving nanotechnology

collaboration network in order to develop insights into its social network growth dynamics.

This study is in line with the surging interests in social network and complex network studies in

the recent decades. In particular, researchers have discovered that many social networks and other real-

world complex networks exhibit a set of properties that distinguish them from random networks such
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as Erdos-Renyi model [5]. These properties fall into two categories. The first category consists of a set

of static topological properties that characterizes social network graphs, including (1) power-law degree

distribution, (2) large clustering coefficient values, and (3) small average shortest path between two

random nodes. In particular, the power-law degree distribution is a distinct feature of scale-free networks;

large clustering coefficient values usually imply manifest community structures; and small average shortest

path length values indicate short average separation between nodes. The latter two features constitute

the so-called small-world network properties.

The second category is the kinetic properties exhibited in the growing process of social networks. For

instance, researchers have reported the “shrinking diameter” phenomenon that the diameters of many

real networks decrease over time [4,16,18]. These static and dynamic properties represent a significant

departure from random networks. While these phenomena have been identified, there is no consensus

on the cause of these features. Recently there has been a flurry of efforts by researchers from different

disciplines exploring a variety of factors, including the attachedness factor (the degree of nodes) and the

locality factor, to discover the growth schemes of social networks [3,10,17]. Section 2 provides an overview

of the existing studies.

The nanotechnology collaboration network studied in in this paper, NanoSCI, is appealing for inves-

tigating social network growth dynamics for the following three reasons. Firstly, collaboration networks

have been widely used in scientometrics and social networks study. It has been discovered that collabo-

ration networks possess many static and dynamic properties that are similar to other social networks. In

his early work on this domain, Newman studied several large collaboration networks and concluded that

these networks exhibit all the general ingredients of small world networks, including short node-to-node

distance and large clustering coefficient [21,22]. Moreover, researchers have recently shown that evolving

collaboration networks exhibit similar dynamic patterns as do other social networks in the growth pro-
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cess, such as shrinking diameters and high clustering coefficient values [4]. Secondly, NanoSCI offers one

of the most extensive databases to date on social networks, including 292, 323 researchers and 368, 511

papers that are indexed by SCI (Science Citation Index) database [1] spanning from 1980-2006. Finally,

the history of nanotechnology research is very short and the literature has developed so recently that

the majority of its literature is on-line. Compared to other fields even new ones such as biotechnology or

super conductivity, the short history of the field combined with its fully on-line character facilitates this

kind of meta-scientific study. Thus NanoSCI provides unique research opportunities for us to investigate

the characteristics of the formation stage of collaboration networks.

In particular, this paper reports a set of static properties and dynamic patterns observed in the

evolving nanotechnology collaboration network. Based on these observations, we explore the joint effect

of attachedness (degree) factor and locality factor for network growth dynamics. This paper proposes

two distance-based computational growth schemes, namely DG (distance-based growth model) and DDG

(hybrid degree and distance-based growth model), and compares them with other growth models. In the

DG model, the probability of building a new connection between two nodes is in inverse proportion to their

distance. The DDG model, similar to Law of Gravity, specifies that the attractiveness between two nodes

is determined by their degree and the distance. Based on the simulation results, we discover that both

clustering coefficient rates and the average shortest distance are closely related to the edge densification

rate, a metric that measures the relative growth speed of edges and nodes. In addition, the hybrid DDG

model exhibits higher clustering coefficient values and decreasing average shortest distance when the edge

densification rate is fixed, which implies that combining locality and attachedness can better characterize

the growth of the nanotechnology community. To summarize, the contributions of this paper include:

(1) exploring the locality and the attachedness-based network growth paradigm and the corresponding
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dynamics and patterns, and (2) discussing factors that can cause high clustering coefficient values and

the “shrinking diameters” phenomenon in temporal social networks.

The rest of this paper is organized as follows: Section 2 introduces the background of this study and

gives a brief review of the related works; Section 3 defines terminology and concepts used in this paper;

Section 4 presents several observations in social networks that motivate our work; Section 5 describes

two computational models that incorporate distance and attachedness factors and presents quantitative

analysis on the impact of these two factors on the topological properties of graph. Finally, Section 6 states

some potential future work and concludes this paper.

2 Related work

A proliferation of work studying the evolution dynamics of complex networks has happened in the last

decade. These related studies include static analysis on social network evolution [9], and a variety of

models to reproduce the static topological properties and dynamic patterns observed in social networks.

The majority of the related studies focus on either the degree factor or the locality factor. This section

provides a list of representative studies along this line:

Attachedness-based Growth Schemes: Attachedness is a concept that measures how well nodes

are connected and therefore it is usually reflected by the degree of nodes in complex networks. In their well-

received article, Barabasi and Albert develop the notable Preferential Attachment theory that specifies

high degree nodes are always favored when building new connections [3]. In this paper, the authors develop

a model in which new nodes are added to the network one by one. The authors claim that the probability

that a node vn will be linked to a vertex vi depends on vi’s degree, di
∑

j
dj

, where di is the degree of node

vi. Each new node attaches itself (creates a link) to one of the existing nodes with a certain probability

that is proportional to the number of links that the existing nodes possess. The authors demonstrate
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that this simple scheme results in power-law degree distribution and “rich get richer” phenomenon. In a

later paper [4], the authors developed a “continuum theory” based on the preferential attachment theory

and use an Mante Carlo approach to simulate the network growth process. The authors show that the

clustering coefficient value can decrease or increase by adjusting the parameter that specifies the number

of newly created internal links per node in unit time. However, in contrast with the decreasing average

shortest distance observed in reality, this approach results in increasing average separation, which was

attributed to the incomplete data by the authors. In this study, we demonstrate that the trend of average

shortest distance is closely related to edge densification rate. In addition, combining both locality and

attachness rate tends to result in decreasing average nodes separation.

Locality-based Growth Scheme: Degree-based models assume that the attractiveness between

nodes only depends on their degrees and is independent of the distance between them. In contrast, many

of the existing models explicitly or implicitly exploit the locality factor and assume that the generation

of a new connection between two arbitrary nodes is related to how far apart they are in the existing

topology. The following is a list of these models:

1. Copying mechanism: This model specifies that at each time step a new node is added to the network

by connecting to a constant number of existing nodes in the network [17]. The new node copies a

number of links from a “prototype” node that is selected randomly from the existing nodes whereas

choosing the remaining neighbors is random. The author show that this process can result in scale-free

distribution.

2. Walking on a network: Inspired by citation networks, Vazquez designed the Walking on a network

scheme to simulate the graph growth process [24]. The model specifies that a network always starts

with an isolated node. At every time step, a new node vi is added and linked to a randomly selected

node vj through a directed edge. The node vi then mimics a “random walk” on the network by



Locality and Attachedness-based Temporal Social Network Growth Dynamics Analysis 7

following the edges starting from node vj and linking to their end points with probability p. This step

is repeated for those nodes to which new connections were established, until no new target node is

found.

3. Referral Model: Davidsen et al. present a simple scheme that connections are always formed between

two nodes that share a common neighbor[7]. This model emulates the real-world scenario that one

person introduces two of his acquaintances get to know each other. Such a simple evolution scheme

is viewed as the basis of the evolution of social networks. The authors demonstrate that this simple

scheme is able to reproduce major nontrivial features of social networks including short path length,

high clustering and scale-free or exponential degree distribution.

4. Distance Preference Model: Jost and Joy describe a purely distance-based scheme where each new

node is connected to a randomly selected node and the subsequent connections are related to the

distance of the destination node[11]. This computational model resembles the DG model in our work.

However, the authors focus on the discussion of degree distribution and assume that new nodes are

always connected to the rest of the networks upon joining. Thus at any given time, there is only one

GCC in the network. This assumption can lead to very different dynamics of network growth.

Similar graph growth mechanisms also include models that implicitly or explicitly rely on the lo-

cality heuristics [8,13,15,18,19,25] or specified feature similarity (correlation) between nodes [26]. In

particular, Guimera et al. [8] propose a team assembly mechanism by investigating the interplay between

“incumbents” and “newcomers” in the context of collaboration networks. This mechanism focuses on

the establishment of “collaborations” rather than “links”. The authors attempt to reproduce a variety

of networks by adjusting the likelihood of different types of agents participating in the collaborations

and evaluate the generated networks based on their degree distribution. While this novel team assembly

model can be generalized to more generic networks, we study explicitly how proximity and degree play
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a role in network growth processes. Another more recent work on this front includes Morris and Gold-

stein’s team-based growth model, known as the Yule model, for the bipartite networks that consist of

both papers and authors [20]. While both the Yule model and our paper are concerned with the growth

mechanism of collaboration networks, there exist three main differences between the two papers. First,

as opposed to the Yule model that focuses on the bipartite networks, we only focus on collaboration

networks, thus our model does not model the productivity (i.e., the number of papers generated) by a

team of collaborators. However, our model can be potentially applied to other complex networks, espe-

cially those in which the cost of connecting two nodes is related to their distance. Second, the team-based

Yule model uses preferential attachment for within-team author selection for a new paper, and random

selection of new authors outside the team. Hence, it adopts a binary locality measure (i.e., whether an

author is within a team or outside of a team). In contrast, the proposed hybrid model (DDG) in this

paper uses a continuous locality measure based on the distance between two authors in the collaboration

network. The third difference between the two growth models is that the team-based Yule model does not

use preferential attachment for selecting new authors outside of the team, whereas our proposed hybrid

model applies preferential attachments to all nodes, regardless of whether they are close or far away on

the network.

These papers provide valuable insights into the dynamics of complex networks. However, there are

inadequate studies in investigating how proximity and degree quantatively contribute to the network

growth scheme and the implications on the static and dynamic properties of social network. In this

paper, we provide in-depth analysis on the growth scheme of social networks and develop network growth

models that incorporate both global attachedness and locality factors. Hence, both degree and distance

factors are taken into consideration in the hybrid model proposed in this paper. The simulation results
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indicate that the evolution process of social networks can be better characterized by combining these two

factors.

3 Temporal social networks

In order to investigate the growth and evolution process of social networks, we define evolving social

networks as temporal social networks. In a temporal social network G(t) = {V (t), E(t)}, the vertex

set V (t) and the edge set E(t) evolve over time. The snapshot of a temporal social network at time

tk, G(tk) = {V (tk), E(tk)}, is a static graph. The two vertices of an edge ei = (vj , vk) is denoted as

V (ei) = {vj , vk}. The set of new connections that are built at time tk is ∆E(tk) = {etk

1 , etk

2 , ..., etk
m}. The

corresponding vertex set is ∆V (tk). And we have

E(tk) = E(tk−1) ∪ ∆E(tk)

V (tk) = V (tk−1) ∪ ∆V (tk)

Note that in the context of collaboration networks, connections can be constructed repeatedly between

the same two nodes at different times, which implies that the set E(tk−1) and ∆E(tk), and V (tk−1)

and ∆V (tk) may not be disjoint. More formally, E(tk−1) ∩ ∆E(tk) ⊇ Φ and V (tk−1) ∩ ∆V (tk) ⊇ Φ,

where Φ represents the empty set. We also define the edge density rate of a temporal social network

as χ(t) = |E(t)|
|V (t)|(|V (t)|−1) and the edge densification rate as ∆χ(t) = |∆E(t)|

|∆V (t)| . The edge density rate is a

static concept and describes the density of edges versus nodes at a particular timestamp t. In contrast,

the edge densification rate is a dynamic concept and it characterizes the speed of edges growth versus

nodes growth. As will be shown in Section 5, the edge densification rate is a crucial factor in determining

topological properties of temporal social networks.

The proximity of two individual nodes in a social network is often defined in the context of the

investigated application domains. The most widely used measure is the shortest distance betweeen the
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two nodes. In addition to shortest distance, researchers have also discovered that two additional factors

can help: for instance Koren et al. proposed a cycle-free effective conductance (CFEC) to measure distance

between network nodes by accouting for the multiple and disparate paths between nodes [12]. However,

the pairwise CFEC computation is prohibitive for large-scale social networks; Liben-Nowell et al. have

shown that the number of common neighbors is a helpful proximity indicator [19]. In the proximity-

based model we develop and describe in the following sections, we adopt shortest distance for individual

proximity measure. However, the other proximity measures can fit in the model alternatively.

Accordingly the aggregate proximity properties of a social network can be evaluated by a variety

of measures, including average shortest distance, diameter, and effective diameter. The diameter dt of a

social network is defined as the largest shortest path between any two nodes, i.e dt = Maxvi,vj∈V r(vi, vj).

Some researchers use effective diameter, a measure that is obtained by taking 90th percentile of the

largest shortest distance combined with interpolation, to reduce variance. However, the diameter, effective

diameter, and average shortest distance tend to exhibit similar dynamics in our experiments. Thus, for

the sake of simplicity, we use average shortest distance for measuring the aggregate proximity of social

networks in the rest of this paper.

In temporal social network, the distance between two nodes changes over time. The shortest distance

from vi to vj at time tk is denoted as rtk
(vi, vj). The average shortest distance for a graph at time tk is

denoted as

r(tk) =

∑

i,j rtk
(vi, vj)

|V (tk)|(|V (tk)| − 1)
.

Similarly, the diameter dt(tk) of a temporal social network at time tk is defined as the largest shortest path

between any two nodes, i.e dt(tk) = Maxvi,vj∈V (tk)rtk
(vi, vj). Some researchers use effective diameter,

a measure that is obtained by taking 90th percentile of the largest shortest distance combined with

interpolation, to reduce variance. However, the diameter, effective diameter, and average shortest distance
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tend to exhibit similar dynamics in our experiments. Thus, for the sake of simplicity, we use average

shortest distance measure in the rest of this paper.

The clustering coefficient ℵvi
(tk) for a node vi at time tk is defined as the proportion of links between

the vertices within vi’s neighborhood divided by the number of links that could possibly exist between

them. More formally,

ℵvi
(tk) =

|{ejk}|

dvi
(tk)(dvi

(tk) − 1)
(1)

where vj , vk ∈ V (t), ejk, eji, eki ∈ E(t) and dvi
(tk) is the degree of node vi at time tk. The clustering

coefficient of a node vi measures how well vi’s neighbors are connected to each other. The average

clustering coefficient ℵ(t) characterizes the modularity of the social network at time t [23].

Evolving graphs G(t) usually consist of a number of isolated subgraphs. It is particularly interesting

to investigate the patterns and behaviors of the largest connected cluster, which is referred as the Giant

Connected Cluster (GCC) in this paper, denoted as GCC(t) = {VGCC(t), EGCC(t)} where VGCC(t) ⊆

V (t), EGCC(t) ⊆ E(t) and

∀vi, vj(vi, vj) ∈ EGCC(t) ⇒ vi ∈ VGCC(t)andvj ∈ VGCC(t).

Table 1 lists a number of important notations for the concepts and terminology used in this paper.

Also note we use “node” and “vertex”; “edge” and “connections” synonymously.

4 Observations and motivations for social network growth models

NanoSCI is a collection of nanotechnology-related articles published and indexed by SCI (Science Cita-

tion Index) in 1980-2006 period. The records are acquired by inquiring at the Thomson Scientific website

[1] directly. Using keyword-based queries generated based on an iterative relevance feedback technique

[14], we obtain 368, 511 SCI-indexed papers regarding nanotechnology. The essential idea of this approach
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Table 1 Terminology and notations for temporal social networks

Notation Meaning

vi a vertex

ei an edge

V (t) the set of vertices at time t

E(t) the set of edges at time t

G(t) = (V (t), E(t)) the graph G at time t

∆V (t) the set of new vertices at time t

∆E(t) the set of new edges at time t

χ(t) |E(t)|
|V (t)|(|V (t)|−1)

edge density ratio

∆χ(t) |∆E(t)|
|∆V (t)|

the densification rate of edges versus nodes at time t

V (ei) the two vertices of edge ei

ℵ(vi) the clustering coefficient of node vi

ℵ(G(t)) the average clustering coefficient of graph G(t)

rt(vi, vj) the shortest distance between nodes vi and vj at time t

r(G(t)) the average shortest distance for Graph G(t)

dt(vi) the degree of node vi at time t

Ck(t) the expected number of vertices whose degree are k at time t

is to augment the keyword set until the returned results converge. In addition, we extract several sub-

communities of nanotechnology from the NanoSCI dataset using keywords such as NanoTube, NanoWire,

NanoParticle, Fullerene, etc. These sub-communities vary with each other in terms of start year, the num-

ber of papers and authors. We consider that the NanoSCI and each of the sub-communities represent a

scientific collaboration network. In each network the nodes are the researchers and two researchers are

connected if they have coauthored a paper, which is represented as a link. The number of papers and the
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Table 2 Statistics for different nanotechnology communities as of year 2006

Dataset Researchers Papers |EGCC | |VGCC |

NanoSCI 292,393 368,511 1,836,499 268,594

NanoTube 31,688 25,285 149,138 26,849

NanoWire 86,234 80,645 435,451 77,304

NanoParticle 81,734 69,530 400,749 72,905

Fullerene 97,641 96,331 515,898 88,496

number of researchers for the NanoSCI and for each of the four nanotechnology communities as of year

2006 are listed in Table 2.

This paper compares the proposed social network growth scheme with existing models in Section 5.5

using the collaboration networks constructed for these communities.

Next we assess how the number of links (edges) between researchers and the number of researchers

(nodes) increase with time. Figure 1 shows in log-log scale the edge growth versus node growth for the

NanoTube and NanoSCI communities, respectively. It appears that the growth speed is almost linear in

the log-log scale which implies that the edge growth increases as power law as a function of the nodes

growth. This finding justifies using the densification laws suggested previously [18]. These Regression

results show that their growth rates are |E(t)| = 2.5173 ∗ |V (t)|1.1049 and |E(t)| = 3.0459 ∗ |V (t)|1.1141

respectively. Thus, the corresponding edge densification rates for the two communities are ∆χ(t) =

2.78 ∗ |V (t)|0.10 and 3.39 ∗ |V (t)|0.11 respectively. These edge densification rate of NanoSCI communities

is used in comparing the simulation results of different network growth models, which will be discussed

in Section 5.5.

Figure 2 demonstrates the temporal changes of average shortest distance, r(GCC(t)), of the giant

connected component, GCC(t) for NanoSCI, NanoTube, Fullerene, NanoParticle, and NanoWire, re-
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Fig. 1 The number of edges E(t) versus number of nodes V (t) for NanoSCI and NanoTube.

.

spectively. Note that Fullenrene and NanoWire are recently emerging communities and the number of

researchers as of 2006 is less than 20000 according to the collected data. In this pilot study we focus

on analysis of the GCC(t) and will leave exploring the entire sysytem for future research. These results

clearly illustrate the “shrinking diameter” phenomenon that has been reported in [16,18]. This is contra-

dictory to conventional wisdom that would predict that the diameter of growing networks shall increase

over time. Leskovec et al [18] developed a “forest fire” network growth model, in which the diameters

can either increase or decrease over time by adjusting parameters of the model. In the following sections
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Fig. 2 The average shortest distance r(GCC(t)) of GCC(t) for NanSCI, Fullerene, NanoParticle, NanoTube, and

NanoWire. Note that Fullenrene and NanoWire are recently emerging communities and the number of researchers

as of 2006 is less than 20000 according to the collected data.

Table 3 Average clustering coefficient values for nanotecnology communities from year 1980 − 2006

Dataset NanoSCI NanoTube Fullerene NanoParticle NanoWire

ℵ(G(t)) 0.82 0.81 0.82 0.83 0.87

we show that this phenomenon can be attributed to both edge densification rates and the way that new

connections are formed (growth models) in the evolving social networks.

The average clustering coefficient, ℵ(G(t)), is an indicator for the modularity of networks. Table 3

shows the average clustering coefficient for NanoSCI, NanoTube, Fullerene, NanoParticle, and NanoWire

communities. Clustering coefficient value of 0.81 for NanoTube, 0.82 for Fullerene, 0.83 for NanoParticle,

and 0.87 for NanoWire communities are significantly higher than random networks, which is usually below
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0.1 [2], and also higher than the clustering coefficient values for other collaboration networks reported [21].

In studying the structure of scientific collaboration networks [21] finds that the clustering coefficient varies

between 0.066 for Medline (papers in biomedical research) to 0.43 for papers published in the Los Alamos

Archive, to 0.73 for SPIRES (published papers and preprints in high-energy physics). Values of ℵ(G(t))

obtained in this study being higher than the clustering coefficient for high-energy physics indicate even

higher modularity of the nano-science communities. In Section 5, we will compare the average clustering

coefficient of the simulation results of the several network growth models with these observations from

the nanotechnology communities.

In order to explore the causes of such intriguing phenomena, including decreasing shortest distance

and high clustering coefficient values, we propose a set of computational models that employ relatively

simple growth schemes and explore how these growth mechanisms can affect the topological properties

of the underlying temporal social networks.

5 Combining locality and global preferential attachment for modeling network growth

The attachedness factor has been traditionally considered as a principal factor in attracting new connec-

tions. In addition to this factor, we observe that nodes tend to connect to their peers within topologically

proximity. For instance, Figure 3a shows the distribution of the shortest distance, as of time tk, between

nodes that establish the third category of connections at time tk + 1 in the GCC(tk) of the pertaining

social network versus the distribution of pair-wise shortest distance between the nodes in GCC(t). Fig-

ure 3a shows the distribution of r2005(vi, vj) where el = (vi, vj) ∈ ∆E(2006) and vi, vj ∈ GCC(2005)

for the NanoTube community. We neglect those connections which had already been in the network in

previous years. This figure demonstrates that there is remarkable disparity between the two distributions.
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It indicates that new connections tend to be created between nodes in proximity. In particular, the vast

majority of links are added between the nodes that are only two hops apart.

To demonstrate explicitly that nodes form new links inversely proportionally to the topological dis-

tance, we calculate the proportion Fr(r) = M/N , where N denotes the number of node pairs at distance

r and M are the pairs among them that form new edges in the next time step. The results is shown in

Figure 3b for NanSCI and NanoTube communities.

In a network a randomly selected node is connected to d other nodes through d links (edges) with

probability P (d) which is called vertex connectivity or degree distribution. We obtain the probability

P (d) for each of the nanoscience communities. The results for NanoSCI and NanoTube calculated in

equidistant in logarithmic scale bins are plotted in Fig. 4a. Triangles mark the degree distribution of all

nodes that exist in the NanoSCI network from its inception through the end of 2005. Crosses mark the

degree distribution of all nodes that exist in the NanoTube network from its inception through the end

of 2005. The tails of both of these distributions exhibit a behavior that is close to a power law. Networks

that show such power law distribution are know as scale-free networks [3].

Barabasi and Albert [3,4] have suggested that power law distribution may apply to most of the net-

works of interest including social networks. They report that scientific collaboration networks in mathe-

matics and neuroscience scale with power law exponent of 2.4 and 2.1, respectively. We find similar values

of the power law exponent for nanoscience networks (see Table 4). Newman [21] report on the structure

of scientific collaboration networks and find that collaboration networks in condensed matter physics,

astrophysics, high-energy physics and computer science, all can be best fit with a power law form with

exponential cut-off. Similarly to [21] we find that the degree distribution of the networks in nanosciences

are best fit with a power law form with exponential cut-off
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Table 4 Summary of results of the analysis. The p-values of the fit for all coefficients are less than 0.0001

Dataset τ dc R2

NanoSCI

Total in 2005 2.21 250 0.99

New in 2006 1.77 166.7 0.98

NanoTube

Total in 2005 1.94 108.7 1.0

New in 2006 1.41 87.7 0.99

P (d) ∼ d−τe−d/dc , (2)

where τ and dc are constants whose values are listed in Table 4.

To demonstrate explicitly that nodes form new links proportionally to the degree of the nodes we

calculate the proportion Fd(d), as a ratio between the number of nodes that form new edges at a certain

step and the number of nodes with the same degree that existed at the previous time step. The results

for NanoSCI and NanoTube communities are shown in Fig. 4b.

Based on these observations, we propose a novel hybrid network growing scheme that incorporates a

locality element into global preferential attachment. We compare this scheme with three existing models:

(1) random growth model, (2) preferential attachment model, and (3) distance based growth model.

In order to make a fair comparison, we parameterize these models and make the edge densification

rate identical to real nanotechnology community growth rates. In Section 5.5, we discuss the simulation

results of these four network growth models and compare them with the observations from nanotechnology

communities. In the following sections, sections 5.1 and 5.2 discuss the random growth model and the
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preferential attachment model; sections 5.3 and 5.4 describe the distance-based model and the proposed

hybrid model. Finally, section 5.5 presents analysis and insights based on the simulation results.

5.1 A Random Growth Model

Callaway et al proposed a simple random growth model where one new node and at most one new edge

are added at a time [6]. We slightly modify the model by parameterizing the number of the new edges

as a function of the number of existing nodes. The number of existing nodes equals to the time-stamp t

therefore the number of new edges is denoted as ∆E(t). This model is referred as A-Random model in

this paper.

The model involves a cycle of three steps: (1) At each time step, add one new node to the graph. (2)

Randomly select two nodes and create an undirected edge between them. (3) Repeat (2) for ∆E(t) times.

At time t, there will be t vertices and on average e(t) =
∑

t ∆e(t) edges, where e(t) is defined as |E(t)|.

Let ck(t) be the expected number of vertices with degree k at time t. The number of isolated vertices

c0(t) will increase by 1 at each time step, but decrease on average by 2∆e(t) c0(t)
t , the probability that a

degree zero vertex is randomly chosen as one of the ends of a new edge. Thus:

c0(t + 1) = c0(t) + 1 − 2∆e(t + 1)
c0(t)

t
(3)

Similarly, the expected number of degree k vertices (k > 0) will increase on average by an amount

proportional to the probability that a degree k − 1 vertex is chosen for attachment by a new edge, and

decrease by an amount proportional to the probability that a degree k vertex is chosen. This gives:

ck(t + 1) = ck(t) + 2∆e(t + 1)
ck−1(t + 1)

t
− 2∆e(t + 1)

ck(t)

t + 1
(4)
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Note that the above equations neglect the possibility that an edge links a vertex to itself. This means

the equations are only approximate at short times, but they become exact in the limit t− > ∞ because

the probability that any vertex is chosen twice decreases like t−2.

5.2 Parameterized preferential attachment model (PPAM)

This section describes a simple parameterized preferential attachment model (PPAM), in which a new

vertex and l new edges (l = ∆e(t)) are added into the network at each time step. In building a new

connection, we specify that (1) we randomly select a start node vi, and (2) the probability that a node

vj is selected as the end node of the new edge is

pt(vj) =
d

′

t(vj)
∑

k d
′

t(vk)

where

d
′

t(vi) = dt(vi) + 1 (5)

Thus,
t

∑

k=1

d
′

t(vk) =

t
∑

k=1

dt(vk) + t = 2e(t) + t (6)

Therefore, the likelihood of a node ns connecting to another node ne only depends on their degree.

Note that by using d
′

t(vi), the model allows zero-degree nodes to be selected as the end node.

c0(t + 1) = c0(t) + 1 − ∆e(t + 1)(
c0(t)

t
+

c0(t)

2e(t) + t
) (7)

The probability SAk−1(t + 1) that a degree k − 1 vertex is selected for attachment by a new edge at

time t + 1 is:

SAk−1(t + 1) = ck−1(t)(
1

t
+

k − 1

2e(t) + t
) (8)
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Similarly, the probability SAk(t + 1) that a degree k vertex is chosen for attachment by a new edge

at time t + 1 is:

SAk(t + 1) = ck(t)(
1

t
+

k

2e(t) + t
) (9)

Hence, the degree distribution is determined by

ck(t + 1) = ck(t) + ∆e(t + 1)(SAk−1(t + 1) − SAk(t + 1)). (10)

5.2.1 Degree-Product based PPAM (DP-PPAM) Barabasi et al. extended the preferential attachment

model to take into account the degree product of both nodes in the network. Thus we also compare

our distance based models to the following updated degree-product based PPAM model. In particular,

in building a new connection, we specify that (1) the start node vi is selcted based on its degree; the

probability is defined as
d
′

i
∑

k
d
′

k

; and (2) the probability that a node vj is selected as the end node of the

new edge is

pt(vj) =
d

′

t(vj)
∑

k d
′

t(vk)

where

d
′

t(vi) = dt(vi) + 1 (11)

5.3 Distance-based Growth (DG) model

This section describes a simple proximity-based growth model in which the likelihood of building a

connection between two nodes only depends on their proximity. Note that the proximity between two

individual nodes can be evalulated by a variety of measures, including shortest distance, CFEC [12]. In

this paper we use shortest distance to measure the proximity between two nodes. In the growth process,

a new vertex and l edges (l = ∆E(t)) are added to the graph at each time step. The two vertices of a

new edge are determined in the following way: (1) one node ns is selected uniformly from the graph as
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the start vertex of the new edge; (2) the probability that a node vp is selected as the end vertex of the

new edge is:

pt(vp) =

1
r
′

t
(vp,vs)

∑

p
1

r
′

t
(vp,vs)

(12)

where

r
′

t(vp, vs) =















R if rt(vp, vs) = ∞

rt(vp, vs) otherwise.

(13)

Equation 13 specifies that if two nodes are disconnected, the distance between them is a large number

R. This way, the probability of building a new connection between any two nodes is non-zero.

5.4 A hybrid distance and degree growth (DDG) model

This section describes a hybrid DDG model in which the distance and attachedness (i.e. degree) factors

are combined to determine the likelihood that a node is selected to form a new edge. Similar to the

aforementioned models, one new vertex and l = ∆E(t) edges are added at each time step in the graph

growth process. The DDG model specifies that the start node vs is selected randomly from the graph,

but the probability that a node vp is selected as the end node of the new edge is

pt(vp) =

d
′

t(vp)

r
′

t
(vp,vs)

∑

p
d
′

t(vp)

r
′

t(vp,vs)

(14)

where rt(p(vp, vs)) is defined by equation 13 and dt(vp) is defined by equation 11.

5.5 Analysis and simulations

In order to evaluate the proposed network growth model, we compare the simulation results of the hybrid

model together with those of the other three models with observations regarding NanoSCI, NanoParticle,
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and NanoTube communities. As a comparison, we also calculate the topological properties of pure random

graphs with the same number of nodes and edges as a baseline to compare with other approaches. This

baseline approach is denoted as PureRandom in this section. As a reminder, A-Random refers to the

quasi-random approach described in Section 5.1; PPAM refers to the previously described preferential

attachment model. In the rest of this section, we analyze and compare these network growth methods

from two important perspectives: (1) the average shortest distance of the networks generated by these

models over time, and (2) the average clustering coefficient of these networks.

5.5.1 Temporal distance analysis In this section we compare the average shortest distance between

the different models described previously in this Section. Figures 5, 6, 7, and 8 illustrate the results of

a set of experiments obtained by varying the densification rates and growth dynamics. In particular,

Figure 5 shows the average shortest distance versus time using the same node growth rates (∆|V (t)|)

and the same edge densification rate (∆χ(t) = 3.39 ∗ |V (t)|0.12). Figure 7 shows the temporal patterns

of average shortest distance for A-Random approaches at different edge densification rates (∆χ(t) =

{0.02 ∗ |V (t)|0.69; 0.02 ∗ |V (t)|0.6; 3.39 ∗ |V (t)|0.12; 0.02 ∗ |V (t)|0.5} respectively. Figure 7 indicates that

the kinetic properties of average shortest distance metric are closely related to the ratio of edge growth

versus node growth. When the edge densification rate is ∆χ(t) = 3.39 ∗ |V (t)|0.12, the average shortest

distances of A-Random increase slowly over time. However, when the edge densification rate is ∆χ(t) =

0.02 ∗ |V (t)|0.69, the average distance for A-Random decreases over time after a sharp increase in early

stage of network growth. Similar results are observed for other growth models as well. In general when

the edge density is higher, the average shortest distance for these models at a particular time point

is smaller. Figure 5, however, shows an interesting result from the perspective of modeling the growth

dynamics of nanotechnology community. By adopting the edge densification rates of NanoSCI community
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(i.e, ∆χ(t) = 3.39 ∗ |V (t)|0.12), the simulation results of these models resulted in rather different growth

behavior.

The average shortest distance of the network generated by the hybrid DDG model decreases over

time after an early-stage increase, which is similar to what we observed in the actual nanotechnology

community (see Figure 2). In contrast, the average shortest distance of the networks generated by the

random growth models and the preferential attachment model (PPAM) increases over time. Results for

a modification of the preferential attachment model which assumes that two nodes connect with each

other proportionally to the product of their degrees are plotted in Figure 6. The average shortest distance

is first increasing and then keeps almost constant value similar to the the average shortest distance of

the local distance-based model (DG) which increases first, then oscillates around a convergence point.

The average shortest distance produced by the DDG model better describes the observations than the

preferential attachment degree product model. Figure 8 demonstrates that the average shortest distance

first increases and then decreases with increasing the size of the GCC. We also noted that the effect

of adding a local factor into the global attachment-based model reduces the average shortest distance,

while the purely locality-based model results in a larger average shortest distance than does the global

attachment-based model. This growth behavior suggests that there is a synergistic effect in proximity

and attachedness factors

5.5.2 Clustering coefficient analysis A node’s clustering coefficient measures the connectivity among

this node’s neighbors. Large cluster coefficient values indicate that the neighbors of the node in question

are well connected to each other. Table 5 shows the clustering coefficient values for networks generated

by different models using the edge densification rate of the NanoSCI community (i.e. ∆χ(t) = 3.39 ∗

|V (t)|0.12). This table indicates that the hybrid DDG model clearly has significantly higher clustering

coefficient values than the preferential attachment, the A-Random growth, and the local distance-based
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Table 5 Average clustering coefficient values for proposed computational models. The clustering coefficient values

are the average of clustering coefficient values for snapshots obtained over 5000 time cycles.

Dataset A-Random DG PPAM DDG

ℵ(G(t)) 0.02 0.05 0.03 0.45

model. More importantly, the simulation results suggest that the hybrid DDG model generates networks

with a clustering coefficient that is much closer to those of the collaborative network of the nanotechnology

communities, shown in Table 3.

In conclusion, based on the simulation results, we observe that the hybrid DDG model is able to

produce networks with clustering coefficient values closer to what was observed in the nanotechnology

community. Furthermore, it generates networks whose average shortest distance decreases over time when

the edge densification rate of the NanoSCI community is used. Hence it is more suitable as a model for the

collaborative network of the nanotechnology community than are either the global preferential attachment

model or the local distance-based model.

6 Conclusions and Future Work

The explosive development of nanotechnology research calls for in-depth scientometric study of this field.

In this paper we conducted a case study on the evolving nanotechnology collaboration networks and

concluded that both locality and attachedness play significant roles in the social network growth pro-

cess. In particular, this paper expands the definition of temporal social networks and demonstrates that

a science-based collaboration network is similar to other real-world social networks. Furthermore, the

nanotechnology collaboration networks studied exhibit an intriguing set of static and dynamic proper-

ties. Inspired by the observations that in collaboration networks new connections tend to be augmented

between nodes in proximity, we explored both locality and attachedness factors in growing networks
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and proposed two distance-based computational growth schemes, namely DG and DDG. The DG model

considers only the locality element while the DDG is a hybrid model that factors into both locality and

attachedness elements. We discovered that the dynamic patterns of average shortest distance and cluster-

ing coefficient are closely connected to the edge densification rates as well as specific growth mechanisms.

In addition, we discovered that when we use when the edge densification rate of the NanoSCI community,

(1) clustering coefficient rates of the DDG model were closer to those of the nanotechnology community,

and (2) the DDG model exhibited decreasing average shortest distance phenomenon, which was observed

in the collaborative network of the nanotechnology community as well. These simulation results suggest

that the hybrid approach that combines locality and attachedness can better characterized the growth of

the nanotechnology community.

The result of this study also inspires us to investigate related questions in our future work. For

instance, what are the general characteristics of social networks that are best characterized by a hybrid

network growth model? How can variations in hybrid growth models be compared to each other? What

insights can be obtained from different hybrid approaches to model network growth? Future research that

address these and other related questions can not only improve our understanding about the dynamic

behavior of network growth, but also lay the foundation for providing deeper insights on social network

analysis.
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Fig. 3 (a) The locality preference of selecting neighbors in the NanoTube community. The left curve shows the

distribution of shortest distance values between those nodes that are in GCC(2005) and build direct collaboration

relation between each other in year 2006 (i.e. r2005(vi, vj) where (vi, vj) ∈ ∆E(2006)andvi, vj ∈ GCC(2005)).

The right curve shows the distribution of the pair-wise shortest distribution for all nodes in GCC(2005). (b)

Proportion of node pairs Fr(r) with certain distance forming new edges in a new time step.
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Fig. 4 (a) Degree distributions of the NanoSCI and NanoTube networks for all nodes through the end of 2005

(triangles and crosses, respectively) and for nodes that occur in 2006 only (inverted triangles and asterick, re-

spectively). Each set of symbols is fitted with a power law with exponential cut-off. See the text for discussion

and consult Table 4 for the values of the parameters of the fit. (b) Proportion of node Fd(d) with certain degree

attracting new edges in a new time step.
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